ﻻ يوجد ملخص باللغة العربية
The evanescent waves named as EW1, EW2, EW3 are described in 3 respective experimental setups: 1) total internal reflection; 2) scattering on an inhomogeneous planar target; and 3) propagation along a waveguide. Some interactions are considered between EW2 and the environment. The latter may include a beam of probing particles and/or the screen on which the EW2 are formed. Some new properties of EW are described, such as complex energy eigenvalues in case of a movable screen, and evanescence exchange between the interacting objects. This reveals the connection between evanescent states and the Gamow states of the studied system. The 4-momentum exchange between EW2 and the probe is highly selective and may collapse the superposition of studied EW2- eigenstates to a single EW-eigenstate of the probing particle. Possible imprints of EW2 in the far field are briefly discussed and a simple experiment is suggested for their observation. .
Harnessing nonlinearities strong enough to allow two single photons to interact with one another is not only a fascinating challenge but is central to numerous advanced applications in quantum information science. Currently, all known approaches are
Quantum entangled photons provide a sensitive probe of many-body interactions and offer an unique experimental portal for quantifying many-body correlations in a material system. In this paper, we present a theoretical demonstration of how photon-pho
Modern research in optical physics has achieved quantum control of strong interactions between a single atom and one photon within the setting of cavity quantum electrodynamics (cQED). However, to move beyond current proof-of-principle experiments in
We discuss the observability of strong coupling between single photons in semiconductor microcavities coupled by a chi(2) nonlinearity. We present two schemes and analyze the feasibility of their practical implementation in three systems: photonic cr
We calculate the dispersive force between a ground state atom and a non planar surface. We present explicit results for a corrugated surface, derived from the scattering approach at first order in the corrugation amplitude. A variety of analytical re