ترغب بنشر مسار تعليمي؟ اضغط هنا

Time sequence spectroscopy of AW UMa. The 518 nm Mg I triplet region analyzed with Broadening Functions

152   0   0.0 ( 0 )
 نشر من قبل Slavek Rucinski
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

High resolution spectroscopic observations of AW UMa, obtained on three consecutive nights with the median time resolution of 2.1 minutes, have been analyzed using the Broadening Functions method in the spectral window Doppler images of the system reveal the presence of vigorous mass motions within the binary system; their presence puts into question the solid-body rotation assumption of the contact binary model. AW UMa appears to be a very tight, semi-detached binary; the mass transfer takes place from the more massive to the less massive component. The primary, a fast-rotating star with V sin i = 181.4+-2.5 km s^-1, is covered by inhomogeneities: very slowly drifting spots and a dense network of ripples more closely participating in its rotation. The spectral lines of the primary show an additional broadening component (called the pedestal) which originates either in the equatorial regions which rotate faster than the rest of the star by about 50 km s^-1 or in an external disk-like structure. The secondary component appears to be smaller than predicted by the contact model. The radial velocity field around the secondary is dominated by accretion of matter transferred from (and possibly partly returned to) the primary component. The parameters of the binary are: A sin i = 2.73 +/- 0.11 R_odot and M_1 sin^3 i = 1.29 +/- 0.15 M_odot, M_2 sin^3 i = 0.128 +/- 0.016 M_odot. The mass ratio q_rm sp = M_2/M_1 = 0.099 +/- 0.003, while still the most uncertain among the spectroscopic elements, is substantially different from the previous numerous and mutually consistent photometric investigations which were based on the contact model. It should be studied why photometry and spectroscopy give so very discrepant results and whether AW UMa is an unusual object or that only very high-quality spectroscopy can reveal the true nature of W UMa-type binaries.

قيم البحث

اقرأ أيضاً

High-resolution spectroscopic observations of the W UMa-type binary Epsilon CrA obtained as a time monitoring sequence on four full and four partial nights within two weeks have been used to derive orbital elements of the system and discuss the valid ity of the Lucy model for description of the radial-velocity data. The observations had more extensive temporal coverage and better quality than similar time-sequence observations of the contact binary AW UMa. The two binaries share several physical properties with both showing very similar deviations from the Lucy model: The primary component is a rapidly-rotating star almost unaffected by the presence of the secondary component, while the latter is embedded in a complex gas flow and appears to have its own rotation-velocity field, in contradiction to the model. The spectroscopic mass ratio is found to be larger than the one derived from the light-curve analysis, similarly as in many other W UMa-type binaries, but this discrepancy for Epsilon CrA is relatively minor suggesting a systematic problem with one of the observational methods commonly affecting other determinations. The presence of the complex velocity flows contradicting the solid-body rotation assumption suggest a necessity of modification to the Lucy model, possibly along the lines outlined by Stepien (2009) in his concept of the energy transfer between the binary components.
The contact binary AW UMa has an extreme mass ratio, with the more massive component (the current primary) close to the main sequence, while the low mass star at q ~ 0.1 (the current secondary) has a much larger radius than a main sequence star of a comparable mass. We propose that the current secondary has almost exhausted hydrogen in its center and is much more advanced in its evolution, as suggested by Stepien. Presumably the current secondary lost most of its mass during its evolution with part of it transferred to the current primary. After losing a large fraction of its angular momentum, the binary may evolve into a system of FK Com type.
112 - C. Kuckein 2015
We present an exceptional data set acquired with the Vacuum Tower Telescope (Tenerife, Spain) covering the pre-flare, flare, and post-flare stages of an M3.2 flare. The full Stokes spectropolarimetric observations were recorded with the Tenerife Infr ared Polarimeter in the He I 1083.0 nm spectral region. The object under study was active region NOAA 11748 on 2013 May 17. During the flare the chomospheric He I 1083.0 nm intensity goes strongly into emission. However, the nearby photospheric Si I 1082.7 nm spectral line profile only gets shallower and stays in absorption. Linear polarization (Stokes Q and U) is detected in all lines of the He I triplet during the flare. Moreover, the circular polarization (Stokes V) is dominant during the flare, being the blue component of the He I triplet much stronger than the red component, and both are stronger than the Si I Stokes V profile. The Si I
As a part of the long-term program at Kitt Peak National Observatory (KPNO), the Mn I 539.4 nm line has been observed for nearly three solar cycles using the McMath telescope and the 13.5 m spectrograph in double-pass mode. These full-disk spectropho tometric observations revealed an unusually strong change of this lines parameters over the solar cycle. Optical pumping by the Mg II k line was originally proposed to explain these variations. More recent studies have proposed that this is not required and that the magnetic variability might explain it. Magnetic variability is also the mechanism that drives the changes in total solar irradiance variations (TSI). With this work we investigate this proposition quantitatively by using using the model SATIRE-S. We applied exactly the same model atmospheres and value of the free parameter as were used in previous solar irradiance reconstructions to now model the variation in the Mn I 539.4 nm line profile and in neighboring Fe I lines. We compared the results of the theoretical model with KPNO observations. Our result confirms that optical pumping of the Mn I 539.4 nm line by Mg II k is not the main cause of its solar cycle change. It also provides independent confirmation of solar irradiance models which are based on the assumption that irradiance variations are caused by the evolution of the solar surface magnetic flux. The result obtained here also supports the spectral irradiance variations computed by these models.
111 - M. Steffen 2015
The solar photospheric oxygen abundance is still widely debated. Adopting the solar chemical composition based on the low oxygen abundance, as determined with the use of three-dimensional (3D) hydrodynamical model atmospheres, results in a well-known mismatch between theoretical solar models and helioseismic measurements that is so far unresolved. We carry out an independent redetermination of the solar oxygen abundance by investigating the center-to-limb variation of the OI IR triplet lines at 777 nm in different sets of spectra with the help of detailed synthetic line profiles based on 3D hydrodynamical CO5BOLD model atmospheres and 3D non-LTE line formation calculations with NLTETD. The idea is to simultaneously derive the oxygen abundance,A(O), and the scaling factor SH that describes the cross-sections for inelastic collisions with neutral hydrogen relative the classical Drawin formula. The best fit of the center-to-limb variation of the triplet lines achieved with the CO5BOLD 3D solar model is clearly of superior quality compared to the line profile fits obtained with standard 1D model atmospheres. Our best estimate of the 3D non-LTE solar oxygen abundance is A(O) = 8.76 +/- 0.02, with the scaling factor SH in the range between 1.2 and 1.8. All 1D non-LTE models give much lower oxygen abundances, by up to -0.15 dex. This is mainly a consequence of the assumption of a $mu$-independent microturbulence.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا