ﻻ يوجد ملخص باللغة العربية
High resolution spectroscopic observations of AW UMa, obtained on three consecutive nights with the median time resolution of 2.1 minutes, have been analyzed using the Broadening Functions method in the spectral window Doppler images of the system reveal the presence of vigorous mass motions within the binary system; their presence puts into question the solid-body rotation assumption of the contact binary model. AW UMa appears to be a very tight, semi-detached binary; the mass transfer takes place from the more massive to the less massive component. The primary, a fast-rotating star with V sin i = 181.4+-2.5 km s^-1, is covered by inhomogeneities: very slowly drifting spots and a dense network of ripples more closely participating in its rotation. The spectral lines of the primary show an additional broadening component (called the pedestal) which originates either in the equatorial regions which rotate faster than the rest of the star by about 50 km s^-1 or in an external disk-like structure. The secondary component appears to be smaller than predicted by the contact model. The radial velocity field around the secondary is dominated by accretion of matter transferred from (and possibly partly returned to) the primary component. The parameters of the binary are: A sin i = 2.73 +/- 0.11 R_odot and M_1 sin^3 i = 1.29 +/- 0.15 M_odot, M_2 sin^3 i = 0.128 +/- 0.016 M_odot. The mass ratio q_rm sp = M_2/M_1 = 0.099 +/- 0.003, while still the most uncertain among the spectroscopic elements, is substantially different from the previous numerous and mutually consistent photometric investigations which were based on the contact model. It should be studied why photometry and spectroscopy give so very discrepant results and whether AW UMa is an unusual object or that only very high-quality spectroscopy can reveal the true nature of W UMa-type binaries.
High-resolution spectroscopic observations of the W UMa-type binary Epsilon CrA obtained as a time monitoring sequence on four full and four partial nights within two weeks have been used to derive orbital elements of the system and discuss the valid
The contact binary AW UMa has an extreme mass ratio, with the more massive component (the current primary) close to the main sequence, while the low mass star at q ~ 0.1 (the current secondary) has a much larger radius than a main sequence star of a
We present an exceptional data set acquired with the Vacuum Tower Telescope (Tenerife, Spain) covering the pre-flare, flare, and post-flare stages of an M3.2 flare. The full Stokes spectropolarimetric observations were recorded with the Tenerife Infr
As a part of the long-term program at Kitt Peak National Observatory (KPNO), the Mn I 539.4 nm line has been observed for nearly three solar cycles using the McMath telescope and the 13.5 m spectrograph in double-pass mode. These full-disk spectropho
The solar photospheric oxygen abundance is still widely debated. Adopting the solar chemical composition based on the low oxygen abundance, as determined with the use of three-dimensional (3D) hydrodynamical model atmospheres, results in a well-known