ﻻ يوجد ملخص باللغة العربية
We construct blow-up solutions of the energy critical wave map equation on $mathbb{R}^{2+1}to mathcal N$ with polynomial blow-up rate ($t^{-1- u}$ for blow-up at $t=0$) in the case when $mathcal{N}$ is a surface of revolution. Here we extend the blow-up range found by C^arstea ($ u>frac 12$) based on the work by Krieger, Schlag and Tataru to $ u>0$. This work relies on and generalizes the recent result of Krieger and the author where the target manifold is chosen as the standard sphere.
We prove that the critical Wave Maps equation with target $S^2$ and origin $mathbb{R}^{2+1}$ admits energy class blow up solutions of the form $$u(t,r)=Q(lambda(t)r)+epsilon(t,r)$$where $Q: mathbb{R}^2 to S^2$ is the ground state harmonic map and $la
Consider the energy critical focusing wave equation on the Euclidian space. A blow-up type II solution of this equation is a solution which has finite time of existence but stays bounded in the energy space. The aim of this work is to exhibit univers
In this paper, we investigate the problem of blow up and sharp upper bound estimates of the lifespan for the solutions to the semilinear wave equations, posed on asymptotically Euclidean manifolds. Here the metric is assumed to be exponential perturb
Following our previous paper in the radial case, we consider blow-up type II solutions to the energy-critical focusing wave equation. Let W be the unique radial positive stationary solution of the equation. Up to the symmetries of the equation, under
In this paper, inspired by the study of the energy flux in local energy inequality of the 3D incompressible Navier-Stokes equations, we improve almost all the blow up criteria involving temperature to allow the temperature in its scaling invariant sp