ﻻ يوجد ملخص باللغة العربية
We prove that the critical Wave Maps equation with target $S^2$ and origin $mathbb{R}^{2+1}$ admits energy class blow up solutions of the form $$u(t,r)=Q(lambda(t)r)+epsilon(t,r)$$where $Q: mathbb{R}^2 to S^2$ is the ground state harmonic map and $lambda(t) = t^{-1- u}$ for any $ u > 0$. This extends the work [13], where such solutions were constructed under the assumption $ u > 1/2$. In light of a result of Struwe [22], our result is optimal for polynomial blow up rates.
We construct blow-up solutions of the energy critical wave map equation on $mathbb{R}^{2+1}to mathcal N$ with polynomial blow-up rate ($t^{-1- u}$ for blow-up at $t=0$) in the case when $mathcal{N}$ is a surface of revolution. Here we extend the blow
Consider the energy critical focusing wave equation on the Euclidian space. A blow-up type II solution of this equation is a solution which has finite time of existence but stays bounded in the energy space. The aim of this work is to exhibit univers
Following our previous paper in the radial case, we consider blow-up type II solutions to the energy-critical focusing wave equation. Let W be the unique radial positive stationary solution of the equation. Up to the symmetries of the equation, under
We prove that any sufficiently differentiable space-like hypersurface of ${mathbb R}^{1+N} $ coincides locally around any of its points with the blow-up surface of a finite-energy solution of the focusing nonlinear wave equation $partial_{tt} u - Del
We describe the asymptotic behavior of positive solutions $u_epsilon$ of the equation $-Delta u + au = 3,u^{5-epsilon}$ in $Omegasubsetmathbb{R}^3$ with a homogeneous Dirichlet boundary condition. The function $a$ is assumed to be critical in the sen