ﻻ يوجد ملخص باللغة العربية
Knowledge of the mean free path distribution of heat-carrying phonons is key to understanding phonon-mediated thermal transport. We demonstrate that thermal conductivity measurements of thin membranes spanning a wide thickness range can be used to characterize how bulk thermal conductivity is distributed over phonon mean free paths. A non-contact transient thermal grating technique was used to measure the thermal conductivity of suspended Si membranes ranging from 15 to 1500 nm in thickness. A decrease in the thermal conductivity from 74% to 13% of the bulk value is observed over this thickness range, which is attributed to diffuse phonon boundary scattering. Due to the well-defined relation between the membrane thickness and phonon mean free path suppression, combined with the range and accuracy of the measurements, we can reconstruct the bulk thermal conductivity accumulation vs. phonon mean free path, and compare with theoretical models.
Most studies of the mean-free path accumulation function (MFPAF) rely on optical techniques to probe heat transfer at length scales on the order of the phonon mean-free path. In this paper, we propose and implement a purely electrical probe of the MF
The phonon Boltzmann transport equation (BTE) is a powerful tool for studying non-diffusive thermal transport. Here, we develop a new universal variational approach to solving the BTE that enables extraction of phonon mean free path (MFP) distributio
The Anderson localization of thermal phonons has been shown only in few nano-structures with strong random disorder by the exponential decay of transmission to zero and a thermal conductivity maximum when increasing system length. In this work, we pr
We study by scanning thermal microscopy the nanoscale thermal conductance of films (40 to 400 nm thick) of [1]benzothieno[3,2-b][1]benzothiophene (BTBT) and 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT-C8). We demonstrate that the out-o
The understanding of the mean free path (MFP) distribution of the energy carriers in materials (e.g. electrons, phonons, magnons, etc.) is a key physical insight into their transport properties. In this context, MFP spectroscopy has become an importa