ترغب بنشر مسار تعليمي؟ اضغط هنا

Bulk and shear viscosities of hot and dense hadron gas

48   0   0.0 ( 0 )
 نشر من قبل Hiranmaya Mishra
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We estimate bulk and shear viscosity at finite temperature and baryon densities of hadronic matter within hadron resonance gas model. For bulk viscosity we use low energy theorems of QCD for the energy momentum tensor correlators. For shear viscosity coefficient, we estimate the same using molecular kinetic theory to relate the shear viscosity coefficient to average momentum of the hadrons in the hot and dense hadron gas. The bulk viscosity to entropy ratio increases with chemical potential and is related to the reduction of velocity of sound at nonzero chemical potential. The shear viscosity to entropy ratio on the other hand, shows a nontrivial behavior with the ratio decreasing with chemical potential for small temperatures but increasing with chemical potential at high temperatures and is related to decrease of entropy density with chemical potential at high temperature due to finite volume of the hadrons.

قيم البحث

اقرأ أيضاً

We discuss the thermoelectric effect of hot and dense hadron gas within the framework of the hadron resonance gas model. Using the relativistic Boltzmann equation within the relaxation time approximation we estimate the Seebeck coefficient of the hot and dense hadronic medium with a gradient in temperature and baryon chemical potential. The hadronic medium in this calculation is modeled by the hadron resonance gas (HRG) model with hadrons and their resonances up to a mass cutoff $Lambdasim 2.6$ GeV. We also extend the formalism of the thermoelectric effect for a nonvanishing magnetic field. The presence of magnetic field also leads to a Hall type thermoelectric coefficient (Nernst coefficient) for the hot and dense hadronic matter apart from a magneto-Seebeck coefficient. We find that generically in the presence of a magnetic field Seebeck coefficient decreases while the Nernst coefficient increases with the magnetic field. At higher temperature and/or baryon chemical potential these coefficients approach to their values at vanishing magnetic field.
The expressions of the shear viscosity and the bulk viscosity components in the presence of an arbitrary external magnetic field for a system of hot charged scalar Bosons (spin-0) as well as for a system of hot charged Dirac Fermions (spin-$frac{1}{2 }$) have been derived by employing the one-loop Kubo Formalism. This is done by explicitly evaluating the thermo-magnetic spectral functions of the energy momentum tensors using the real time formalism of finite temperature field theory and the Schwinger proper time formalism. In the present work, a rich quantum field theoretical structure in the expressions of the viscous coefficients in non-zero magnetic field are found, which are different from their respective expressions obtained earlier via kinetic theory based calculations; though, in absence of magnetic field, the one-loop Kubo and the kinetic theory based expressions for the viscosities are known to be identical. We have identified that Kubo and kinetic theory based results of viscosity components follow similar kind of temperature and magnetic field dependency. The relaxation time and the synchrotron frequency in the kinetic theory formalism are realized to be connected respectively with the thermal width of propagator and the transitions among the Landau levels of the charged particles in the Kubo formalism. We believe that, the connection of latter quantities are quite new and probably the present work is the first time addressing this interpretation along with the new expressions of viscosity components, not seen in existing works.
We evaluate the viscous damping of anisotropic flow in heavy-ion collisions for arbitrary temperature-dependent shear and bulk viscosities. We show that the damping is solely determined by effective shear and bulk viscosities, which are weighted aver ages over the temperature. We determine the relevant weights for nucleus-nucleus collisions at $sqrt{s_{rm NN}}=5.02$ TeV and 200 GeV, corresponding to the maximum LHC and RHIC energies, by running ideal and viscous hydrodynamic simulations. The effective shear viscosity is driven by temperatures below $210$ MeV at RHIC, and below $280$ MeV at the LHC, with the largest contributions coming from the lowest temperatures, just above freeze-out. The effective bulk viscosity is driven by somewhat higher temperatures, corresponding to earlier stages of the collision. We show that at a fixed collision energy, the effective viscosity is independent of centrality and system size, to the same extent as the mean transverse momentum of outgoing hadrons. The variation of viscous damping is determined by Reynolds number scaling.
47 - Dmitri Antonov 2010
The contributions of confining as well as nonconfining nonperturbative self-interactions of stochastic background fields to the shear and bulk viscosities of the gluon plasma in SU(3) Yang-Mills theory are calculated. The nonconfining self-interactio ns change (specifically, diminish) the values of the shear and bulk viscosities by 15%, that is close to the 17% which the strength of the nonconfining self-interactions amounts of the full strength of nonperturbative self-interactions. The ratios to the entropy density of the obtained nonperturbative contributions to the shear and bulk viscosities are compared with the results of perturbation theory and the predictions of {cal N}=4 SYM.
We compute the transport coefficients, namely, the coefficients of shear and bulk viscosity as well as thermal conductivity for hot and dense quark matter. The calculations are performed within the Nambu- Jona Lasinio (NJL) model. The estimation of t he transport coefficients is made using a quasiparticle approach of solving the Boltzmann kinetic equation within the relaxation time approximation. The transition rates are calculated in a manifestly covariant manner to estimate the thermal-averaged cross sections for quark-quark and quark-antiquark scattering. The calculations are performed for finite chemical potential also. Within the parameters of the model, the ratio of shear viscosity to entropy density has a minimum at the Mott transition temperature. At vanishing chemical potential, the ratio of bulk viscosity to entropy density, on the other hand, decreases with temperature with a sharp decrease near the critical temperature, and vanishes beyond it. At finite chemical potential, however, it increases slowly with temperature beyond the Mott temperature. The coefficient of thermal conductivity also shows a minimum at the critical temperature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا