ﻻ يوجد ملخص باللغة العربية
We evaluate the viscous damping of anisotropic flow in heavy-ion collisions for arbitrary temperature-dependent shear and bulk viscosities. We show that the damping is solely determined by effective shear and bulk viscosities, which are weighted averages over the temperature. We determine the relevant weights for nucleus-nucleus collisions at $sqrt{s_{rm NN}}=5.02$ TeV and 200 GeV, corresponding to the maximum LHC and RHIC energies, by running ideal and viscous hydrodynamic simulations. The effective shear viscosity is driven by temperatures below $210$ MeV at RHIC, and below $280$ MeV at the LHC, with the largest contributions coming from the lowest temperatures, just above freeze-out. The effective bulk viscosity is driven by somewhat higher temperatures, corresponding to earlier stages of the collision. We show that at a fixed collision energy, the effective viscosity is independent of centrality and system size, to the same extent as the mean transverse momentum of outgoing hadrons. The variation of viscous damping is determined by Reynolds number scaling.
We have evaluated the transport coefficients of quark and hadronic matter in the frame work of Polyakov-Quark-Meson model. The thermal widths of quarks and mesons, which inversely control the strength of these transport coefficients, are obtained fro
We have calculated the temperature dependence of shear $eta$ and bulk $zeta$ viscosities of quark matter due to quark-meson fluctuations. The quark thermal width originating from quantum fluctuations of quark-$pi$ and quark-$sigma$ loops at finite te
The correlation between the mean transverse momentum of outgoing particles, $langle p_t rangle$, and the magnitude of anisotropic flow, $v_n$, has recently been measured in Pb+Pb collisions at the CERN Large Hadron Collider, as a function of the coll
Higher-order anisotropic flows in heavy-ion collisions are affected by nonlinear mode coupling effects. It has been suggested that the associated nonlinear hydrodynamic response coefficients probe the transport properties and are largely insensitive
We explore the influence of a temperature-dependent shear viscosity over entropy density ratio $eta/s$ on the azimuthal anisotropies v_2 and v_4 of hadrons at various rapidities. We find that in Au+Au collisions at full RHIC energy, $sqrt{s_{NN}}=200