ﻻ يوجد ملخص باللغة العربية
We establish a precise relationship between spherical harmonics and Fourier basis functions over a hypercube randomly embedded in the sphere. In particular, we give a bound on the expected Boolean noise sensitivity of a randomly rotated function in terms of its spherical sensitivity, which we define according to its evolution under the spherical heat equation. As an application, we prove an average case of the Gotsman-Linial conjecture, bounding the sensitivity of polynomial threshold functions subjected to a random rotation.
We identify the dimension of the centralizer of the symmetric group $mathfrak{S}_d$ in the partition algebra $mathcal{A}_d(delta)$ and in the Brauer algebra $mathcal{B}_d(delta)$ with the number of multidigraphs with $d$ arrows and the number of disj
This is a survey on the exact complexity of computing the Tutte polynomial. It is the longer 2017 version of Chapter 25 of the CRC Handbook on the Tutte polynomial and related topics, edited by J. Ellis-Monaghan and I. Moffatt, which is due to appear
Let $f: {0,1}^n to {0, 1}$ be a boolean function, and let $f_land (x, y) = f(x land y)$ denote the AND-function of $f$, where $x land y$ denotes bit-wise AND. We study the deterministic communication complexity of $f_land$ and show that, up to a $log
Regular semisimple Hessenberg varieties are subvarieties of the flag variety $mathrm{Flag}(mathbb{C}^n)$ arising naturally in the intersection of geometry, representation theory, and combinatorics. Recent results of Abe-Horiguchi-Masuda-Murai-Sato an
Consider the problem of determining whether there exists a spanning hypertree in a given k-uniform hypergraph. This problem is trivially in P for k=2, and is NP-complete for k>= 4, whereas for k=3, there exists a polynomial-time algorithm based on Lo