ترغب بنشر مسار تعليمي؟ اضغط هنا

The volume polynomial of regular semisimple Hessenberg varieties and the Gelfand-Zetlin polytope

162   0   0.0 ( 0 )
 نشر من قبل Megumi Harada
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Regular semisimple Hessenberg varieties are subvarieties of the flag variety $mathrm{Flag}(mathbb{C}^n)$ arising naturally in the intersection of geometry, representation theory, and combinatorics. Recent results of Abe-Horiguchi-Masuda-Murai-Sato and Abe-DeDieu-Galetto-Harada relate the volume polynomials of regular semisimple Hessenberg varieties to the volume polynomial of the Gelfand-Zetlin polytope $mathrm{GZ}(lambda)$ for $lambda=(lambda_1,lambda_2,ldots,lambda_n)$. The main results of this manuscript use and generalize tools developed by Anderson-Tymoczko, Kiritchenko-Smirnov-Timorin, and Postnikov, in order to derive an explicit formula for the volume polynomials of regular semisimple Hessenberg varieties in terms of the volumes of certain faces of the Gelfand-Zetlin polytope, and also exhibit a manifestly positive, combinatorial formula for their coefficients with respect to the basis of monomials in the $alpha_i := lambda_i-lambda_{i+1}$. In addition, motivated by these considerations, we carefully analyze the special case of the permutohedral variety, which is also known as the toric variety associated to Weyl chambers. In this case, we obtain an explicit decomposition of the permutohedron (the moment map image of the permutohedral variety) into combinatorial $(n-1)$-cubes, and also give a geometric interpretation of this decomposition by expressing the cohomology class of the permutohedral variety in $mathrm{Flag}(mathbb{C}^n)$ as a sum of the cohomology classes of a certain set of Richardson varieties.

قيم البحث

اقرأ أيضاً

We investigate the cohomology rings of regular semisimple Hessenberg varieties whose Hessenberg functions are of the form $h=(h(1),ndots,n)$ in Lie type $A_{n-1}$. The main result of this paper gives an explicit presentation of the cohomology rings i n terms of generators and their relations. Our presentation naturally specializes to Borels presentation of the cohomology ring of the flag variety and it is compatible with the representation of the symmetric group $mathfrak{S}_n$ on the cohomology constructed by J. Tymoczko. As a corollary, we also give an explicit presentation of the $mathfrak{S}_n$-invariant subring of the cohomology ring.
I construct a correspondence between the Schubert cycles on the variety of complete flags in C^n and some faces of the Gelfand-Zetlin polytope associated with the irreducible representation of SL_n(C) with a strictly dominant highest weight. The cons truction is based on a geometric presentation of Schubert cells by Bernstein-Gelfand-Gelfand using Demazure modules. The correspondence between the Schubert cycles and faces is then used to interpret the classical Chevalley formula in Schubert calculus in terms of the Gelfand-Zetlin polytopes. The whole picture resembles the picture for toric varieties and their polytopes.
107 - Martha Precup 2016
Recently Brosnan and Chow have proven a conjecture of Shareshian and Wachs describing a representation of the symmetric group on the cohomology of regular semisimple Hessenberg varieties for $GL_n(mathbb{C})$. A key component of their argument is tha t the Betti numbers of regular Hessenberg varieties for $GL_n(mathbb{C})$ are palindromic. In this paper, we extend this result to all reductive algebraic groups, proving that the Betti numbers of regular Hessenberg varieties are palindromic.
181 - Erik Insko , Martha Precup 2017
Although regular semisimple Hessenberg varieties are smooth and irreducible, semisimple Hessenberg varieties are not necessarily smooth in general. In this paper we determine the irreducible components of semisimple Hessenberg varieties corresponding to the standard Hessenberg space. We prove that these irreducible components are smooth and give an explicit description of their intersections, which constitute the singular locus. We conclude with an example of a semisimple Hessenberg variety corresponding to another Hessenberg space which is singular and irreducible, showing that results of this nature do not hold for all semisimple Hessenberg varieties.
This article surveys recent developments on Hessenberg varieties, emphasizing some of the rich connections of their cohomology and combinatorics. In particular, we will see how hyperplane arrangements, representations of symmetric groups, and Stanley s chromatic symmetric functions are related to the cohomology rings of Hessenberg varieties. We also include several other topics on Hessenberg varieties to cover recent developments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا