ترغب بنشر مسار تعليمي؟ اضغط هنا

Precision measurements of cosmic ray air showers with the SKA

123   0   0.0 ( 0 )
 نشر من قبل Tim Huege
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Supplemented with suitable buffering techniques, the low-frequency part of the SKA can be used as an ultra-precise detector for cosmic-ray air showers at very high energies. This would enable a wealth of scientific applications: the physics of the transition from Galactic to extragalactic cosmic rays could be probed with very high precision mass measurements, hadronic interactions could be studied up to energies well beyond the reach of man-made particle accelerators, air shower tomography could be performed with very high spatial resolution exploiting the large instantaneous bandwidth and very uniform instantaneous $u$-$v$ coverage of SKA1-LOW, and the physics of thunderstorms and possible connections between cosmic rays and lightning initiation could be studied in unprecedented levels of detail. In this article, we describe the potential of the SKA as an air shower radio detector from the perspective of existing radio detection efforts and discuss the associated technical requirements.



قيم البحث

اقرأ أيضاً

82 - T. Huege , J.D. Bray , S. Buitink 2015
As of 2023, the Square Kilometre Array will constitute the worlds largest radio telescope, offering unprecedented capabilities for a diverse science programme in radio astronomy. At the same time, the SKA will be ideally suited to detect extensive ai r showers initiated by cosmic rays in the Earths atmosphere via their radio emission. With its very dense and uniform antenna spacing in a fiducial area of one km$^2$ and its large bandwidth of 50-350 MHz, the low-frequency part of the SKA will provide very precise measurements of individual cosmic ray air showers. These precision measurements will allow detailed studies of the mass composition of cosmic rays in the energy region of transition from a Galactic to an extragalactic origin. Also, the SKA will facilitate three-dimensional tomography of the electromagnetic cascades of air showers, allowing the study of particle interactions at energies beyond the reach of the LHC. Finally, studies of possible connections between air showers and lightning initiation can be taken to a new level with the SKA. We discuss the science potential of air shower detection with the SKA and report on the technical requirements and project status.
Precise measurements of the radio emission by cosmic ray air showers require an adequate treatment of noise. Unlike to usual experiments in particle physics, where noise always adds to the signal, radio noise can in principle decrease or increase the signal if it interferes by chance destructively or constructively. Consequently, noise cannot simply be subtracted from the signal, and its influence on amplitude and time measurement of radio pulses must be studied with care. First, noise has to be determined consistently with the definition of the radio signal which typically is the maximum field strength of the radio pulse. Second, the average impact of noise on radio pulse measurements at individual antennas is studied for LOPES. It is shown that a correct treatment of noise is especially important at low signal-to-noise ratios: noise can be the dominant source of uncertainty for pulse height and time measurements, and it can systematically flatten the slope of lateral distributions. The presented method can also be transfered to other experiments in radio and acoustic detection of cosmic rays and neutrinos.
As of 2023, the low-frequency part of the Square Kilometre Array will go online in Australia. It will constitute the largest and most powerful low-frequency radio-astronomical observatory to date, and will facilitate a rich science programme in astro nomy and astrophysics. With modest engineering changes, it will also be able to measure cosmic rays via the radio emission from extensive air showers. The extreme antenna density and the homogeneous coverage provided by more than 60,000 antennas within an area of one km$^2$ will push radio detection of cosmic rays in the energy range around 10$^{17}$ eV to ultimate precision, with superior capabilities in the reconstruction of arrival direction, energy, and an expected depth-of-shower-maximum resolution of 6~g/cm${^2}$.
For fifty years, cosmic-ray air showers have been detected by their radio emission. We present the first laboratory measurements that validate electrodynamics simulations used in air shower modeling. An experiment at SLAC provides a beam test of radi o-frequency (RF) radiation from charged particle cascades in the presence of a magnetic field, a model system of a cosmic-ray air shower. This experiment provides a suite of controlled laboratory measurements to compare to particle-level simulations of RF emission, which are relied upon in ultra-high-energy cosmic-ray air shower detection. We compare simulations to data for intensity, linearity with magnetic field, angular distribution, polarization, and spectral content. In particular, we confirm modern predictions that the magnetically induced emission in a dielectric forms a cone that peaks at the Cherenkov angle and show that the simulations reproduce the data within systematic uncertainties.
Tunka-Rex is a radio detector for cosmic-ray air showers in Siberia, triggered by Tunka-133, a co-located air-Cherenkov detector. The main goal of Tunka-Rex is the cross-calibration of the two detectors by measuring the air-Cherenkov light and the ra dio signal emitted by the same air showers. This way we can explore the precision of the radio-detection technique, especially for the reconstruction of the primary energy and the depth of the shower maximum. The latter is sensitive to the mass of the primary cosmic-ray particles. In this paper we describe the detector setup and explain how electronics and antennas have been calibrated. The analysis of data of the first season proves the detection of cosmic-ray air showers and therefore, the functionality of the detector. We confirm the expected dependence of the detection threshold on the geomagnetic angle and the correlation between the energy of the primary cosmic-ray particle and the radio amplitude. Furthermore, we compare reconstructed amplitudes of radio pulses with predictions from CoREAS simulations, finding agreement within the uncertainties.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا