ﻻ يوجد ملخص باللغة العربية
Long-duration gamma-ray bursts (GRBs) are indisputably related to star formation, and their vast luminosity in gamma rays pin-points regions of star formation independent of galaxy mass. As such, GRBs provide a unique tool for studying star forming galaxies out to high-z independent of luminosity. Most of our understanding of the properties of GRB hosts (GRBHs) comes from optical and near-infrared (NIR) follow-up observations, and we therefore have relatively little knowledge of the fraction of dust-enshrouded star formation that resides within GRBHs. Currently ~20% of GRBs show evidence of significant amounts of dust along the line of sight to the afterglow through the host galaxy, and these GRBs tend to reside within redder and more massive galaxies than GRBs with optically bright afterglows. In this paper we present Herschel observations of five GRBHs with evidence of being dust-rich, targeted to understand the dust attenuation properties within GRBs better. Despite the sensitivity of our Herschel observations, only one galaxy in our sample was detected (GRBH 070306), for which we measure a total star formation rate (SFR) of ~100Mstar/yr, and which had a relatively high stellar mass (log[Mstar]=10.34+0.09/-0.04). Nevertheless, when considering a larger sample of GRBHs observed with Herschel, it is clear that stellar mass is not the only factor contributing to a Herschel detection, and significant dust extinction along the GRB sightline (A_{V,GRB}>1.5~mag) appears to be a considerably better tracer of GRBHs with high dust mass. This suggests that the extinguishing dust along the GRB line of sight lies predominantly within the host galaxy ISM, and thus those GRBs with A_{V,GRB}>1~mag but with no host galaxy Herschel detections are likely to have been predominantly extinguished by dust within an intervening dense cloud.
Until recently, dust emission has been detected in very few host galaxies of gamma-ray bursts (GRBHs). With Herschel, we have now observed 17 GRBHs up to redshift z~3 and detected seven of them at infrared (IR) wavelengths. This relatively high detec
We present a preliminary data release from our multi-year campaign at Keck Observatory to study the host galaxies of a large sample of Swift-era gamma-ray bursts via multi-color ground-based optical imaging and spectroscopy. With over 160 targets obs
We obtained CO(2-1) observations of seven GRB hosts with the APEX and IRAM 30m telescopes. We analysed these data together with all other hosts with previous CO observations. We obtained detections for 3 GRB hosts (980425, 080207, and 111005A) and up
Due to their extreme luminosities, gamma-ray bursts (GRBs) can be detected in hostile regions of galaxies, nearby and at very high redshift, making them important cosmological probes. The investigation of galaxies hosting long-duration GRBs (whose pr
Long-duration Gamma-Ray Bursts (GRBs) allow us to pinpoint and study star-forming galaxies in the early universe, thanks to their orders of magnitude brighter peak luminosities compared to other astrophysical sources, and their association with death