ترغب بنشر مسار تعليمي؟ اضغط هنا

Molecular gas masses of gamma-ray burst host galaxies

121   0   0.0 ( 0 )
 نشر من قبل Micha{\\l} Jerzy Micha{\\l}owski
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We obtained CO(2-1) observations of seven GRB hosts with the APEX and IRAM 30m telescopes. We analysed these data together with all other hosts with previous CO observations. We obtained detections for 3 GRB hosts (980425, 080207, and 111005A) and upper limits for the remaining 4 (031203, 060505, 060814, and 100316D). In our entire sample of 12 CO-observed GRB hosts, 3 are clearly deficient in molecular gas, even taking into account their metallicity (980425, 060814, and 080517). Four others are close to the best-fit line for other star-forming galaxies on the SFR-MH2 plot (051022, 060505, 080207, and 100316D). One host is clearly molecule rich (111005A). Finally, the data for 4 GRB hosts are not deep enough to judge whether they are molecule deficient (000418, 030329, 031203, and 090423). The median value of the molecular gas depletion time, MH2/SFR, of GRB hosts is ~0.3 dex below that of other star-forming galaxies, but this result has low statistical significance. A Kolmogorov-Smirnov test performed on MH2/SFR shows an only ~2sigma difference between GRB hosts and other galaxies. This difference can partly be explained by metallicity effects, since the significance decreases to ~1sigma for MH2/SFR versus~metallicity. We found that any molecular gas deficiency of GRB hosts has low statistical significance and that it can be attributed to their lower metallicities; and thus the sample of GRB hosts has molecular properties that are consistent with those of other galaxies, and they can be treated as representative star-forming galaxies. Given the concentration of atomic gas recently found close to GRB and supernova sites, indicating recent gas inflow, our results about the weak molecular deficiency imply that such an inflow does not enhance the SFRs significantly, or that atomic gas converts efficiently into the molecular phase, which fuels star formation.



قيم البحث

اقرأ أيضاً

259 - Ashley Chrimes 2018
We identify and explore the properties of an infrared-bright gamma-ray burst (GRB) host population. Candidate hosts are selected by coincidence with sources in WISE, with matching to random coordinates and a false alarm probability analysis showing t hat the contamination fraction is approx 0.5. This methodology has already identified the host galaxy of GRB 080517. We combine survey photometry from Pan-STARRS, SDSS, APASS, 2MASS, GALEX and WISE with our own WHT/ACAM and VLT/X- shooter observations to classify the candidates and identify interlopers. Galaxy SED fitting is performed using MAGPHYS, in addition to stellar template fitting, yielding 13 possible IR-bright hosts. A further 7 candidates are identified from previously published work. We report a candidate host for GRB 061002, previously unidentified as such. The remainder of the galaxies have already been noted as potential hosts. Comparing the IR-bright population properties including redshift z, stellar mass M*, star formation rate SFR and V-band attenuation Av to GRB host catalogues in the literature, we find that the infrared-bright population is biased toward low z, high M* and high Av. This naturally arises from their initial selection - local and dusty galaxies are more likely to have the required IR flux to be detected in WISE. We conclude that while IR-bright GRB hosts are not a physically distinct class, they are useful for constraining existing GRB host populations, particularly for long GRBs.
132 - S. Savaglio 2012
Due to their extreme luminosities, gamma-ray bursts (GRBs) can be detected in hostile regions of galaxies, nearby and at very high redshift, making them important cosmological probes. The investigation of galaxies hosting long-duration GRBs (whose pr ogenitor is a massive star) demonstrated their connection to star formation. Still, the link to the total galaxy population is controversial, mainly because of the small-number statistics: ~ 1,100 are the GRBs detected so far, ~ 280 those with measured redshift, and ~ 70 the hosts studied in detail. These are typically low-redshift (z < 1.5), low luminosity, metal poor, and star-forming galaxes. On the other hand, at 1.5< z <4, massive, metal rich and dusty, interacting galaxies are not uncommon. The most distant population (z > 4) is poorly explored, but the deep limits reached point towards very small and star-forming objects, similar to the low-z population. This `back to the future behavior is a natural consequence of the connection of long GRBs to star formation in young regions of the universe.
GRB-selected galaxies are broadly known to be faint, blue, young, star-forming dwarf galaxies. This insight, however, is based in part on heterogeneous samples of optically selected, lower-redshift galaxies. To study the statistical properties of GRB -selected galaxies we here introduce The Optically Unbiased GRB Host (TOUGH) complete sample of 69 X-ray selected Swift GRB host galaxies spanning the redshift range 0.03-6.30 and summarise the first results of a large observational survey of these galaxies.
164 - Daniel A. Perley 2013
We present a preliminary data release from our multi-year campaign at Keck Observatory to study the host galaxies of a large sample of Swift-era gamma-ray bursts via multi-color ground-based optical imaging and spectroscopy. With over 160 targets obs erved to date (and almost 100 host detections, most of which have not previously been reported in the literature) our effort represents the broadest GRB host survey to date. While targeting was heterogeneous, our observations span the known diversity of GRBs including short bursts, long bursts, spectrally soft GRBs (XRFs), ultra-energetic GRBs, X-ray faint GRBs, dark GRBs, SN-GRBs, and other sub-classes. We also present a preview of our database (currently available online via a convenient web interface) including a catalog of multi-color photometry, redshifts and line IDs. Final photometry and reduced imaging and spectra will be available in the near future.
Here we built up a sample of 22 GRBs at redshifts $z > 2$ observed with X-shooter to determine the abundances of hydrogen, metals, dust, and molecular species. This allows us to study the metallicity and dust depletion effects in the neutral ISM at h igh redshift and to answer the question whether (and why) there might be a lack of H$_2$ in GRB-DLAs. We fit absorption lines and measure the column densities of different metal species as well as atomic and molecular hydrogen. The derived relative abundances are used to fit dust depletion sequences and determine the dust-to-metals ratio and the host-galaxy intrinsic visual extinction. There is no lack of H$_2$-bearing GRB-DLAs. We detect absorption lines from H$_2$ in 6 out of 22 GRB afterglow spectra, with molecular fractions ranging between $fsimeq 5cdot10^{-5}$ and $fsimeq 0.04$, and claim tentative detections in three other cases. The GRB-DLAs in the present sample have on average low metallicities ($mathrm{[X/H]}approx -1.3$), comparable to the rare population of QSO-ESDLAs (log N(HI) $> 21.5$). H$_2$-bearing GRB-DLAs are found to be associated with significant dust extinction, $A_V > 0.1$ mag, and have dust-to-metals ratios DTM$ > 0.4$. All of these systems exhibit column densities of log N(HI) $> 21.7$. The overall fraction of H$_2$ detections is $ge 27$% (41% including tentative detections), which is three times larger than in the general population of QSO-DLAs. For $2<z<4$, and for log N(HI) $> 21.7$, the H$_2$ detection fraction is 60-80% in GRB-DLAs as well as in extremely strong QSO-DLAs. This is likely a consequence of the fact that both GRB- and QSO-DLAs with high N(HI) probe sight-lines with small impact parameters that indicate that the absorbing gas is associated with the inner regions of the absorbing galaxy, where the gas pressure is higher and the conversion of HI to H$_2$ takes place.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا