ﻻ يوجد ملخص باللغة العربية
On the basis of the Brueckner-Hartree-Fock method with the nucleon-nucleon forces obtained from lattice QCD simulations, the properties of the medium-heavy doubly-magic nuclei such as 16^O and 40^Ca are investigated. We found that those nuclei are bound for the pseudo-scalar meson mass M_PS ~ 470 MeV. The mass number dependence of the binding energies, single-particle spectra and density distributions are qualitatively consistent with those expected from empirical data at the physical point, although these hypothetical nuclei at heavy quark mass have smaller binding energies than the real nuclei.
We present a comprehensive study of the lowest moments of nucleon generalized parton distributions in N_f=2+1 lattice QCD using domain wall valence quarks and improved staggered sea quarks. Our investigation includes helicity dependent and independen
We present a determination of nucleon-nucleon scattering phase shifts for l >= 0. The S, P, D and F phase shifts for both the spin-triplet and spin-singlet channels are computed with lattice Quantum ChromoDynamics. For l > 0, this is the first lattic
This work presents the first calculation in lattice QCD of three moments of spin-averaged and spin-polarized generalized parton distributions in the proton. It is shown that the slope of the associated generalized form factors decreases significantly
Previous extrapolations of lattice QCD results for the nucleon mass to the physically relevant region of small quark masses, using chiral effective field theory, are extended and expanded in several directions. A detailed error analysis is performed.
We present results on the nucleon axial form factors within lattice QCD using two flavors of degenerate twisted mass fermions. Volume effects are examined using simulations at two volumes of spatial length $L=2.1$ fm and $L=2.8$ fm. Cut-off effects a