ترغب بنشر مسار تعليمي؟ اضغط هنا

Light Dark Matter, Naturalness, and the Radiative Origin of the Electroweak Scale

180   0   0.0 ( 0 )
 نشر من قبل Martin Bauer
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study classically scale invariant models in which the Standard Model Higgs mass term is replaced in the Lagrangian by a Higgs portal coupling to a complex scalar field of a dark sector. We focus on models that are weakly coupled with the quartic scalar couplings nearly vanishing at the Planck scale. The dark sector contains fermions and scalars charged under dark SU(2) x U(1) gauge interactions. Radiative breaking of the dark gauge group triggers electroweak symmetry breaking through the Higgs portal coupling. Requiring both a Higgs boson mass of 125.5 GeV and stability of the Higgs potential up to the Planck scale implies that the radiative breaking of the dark gauge group occurs at the TeV scale. We present a particular model which features a long-range abelian dark force. The dominant dark matter component is neutral dark fermions, with the correct thermal relic abundance, and in reach of future direct detection experiments. The model also has lighter stable dark fermions charged under the dark force, with observable effects on galactic-scale structure. Collider signatures include a dark sector scalar boson with mass < 250 GeV that decays through mixing with the Higgs boson, and can be detected at the LHC. The Higgs boson, as well as the new scalar, may have significant invisible decays into dark sector particles.



قيم البحث

اقرأ أيضاً

We consider a classically scale-invariant extension of the standard model in which a dark, non-Abelian gauge symmetry is spontaneously broken via the Coleman-Weinberg mechanism. Higgs portal couplings between the dark and standard model sectors provi de an origin for the Higgs mass squared parameter and, hence, the electroweak scale. We find that choices for model parameters exist in which the dark gauge multiplet is viable as dark matter.
Weak scale supersymmetry (SUSY) remains a prime explanation for the radiative stability of the Higgs field. A natural account of the Higgs boson mass, however, strongly favors extensions of the Minimal Supersymmetric Standard Model (MSSM). A plausibl e option is to introduce a new supersymmetric sector coupled to the MSSM Higgs fields, whose associated states resolve the little hierarchy problem between the third generation squark masses and the weak scale. SUSY also accomodates a weakly interacting cold dark matter (DM) candidate in the form of a stable neutralino. In minimal realizations, the thus-far null results of direct DM searches, along with the DM relic abundance constraint, introduce a level of fine-tuning as severe as the one due to the SUSY little hierarchy problem. We analyse the generic implications of new SUSY sectors parametrically heavier than the minimal SUSY spectrum, devised to increase the Higgs boson mass, on this little neutralino DM problem. We focus on the SUSY operator of smallest scaling dimension in an effective field theory description, which modifies the Higgs and DM sectors in a correlated manner. Within this framework, we show that recent null results from the LUX experiment imply a tree-level fine-tuning for gaugino DM which is parametrically at least a few times larger than that of the MSSM. Higgsino DM whose relic abundance is generated through a thermal freeze-out mechanism remains also severely fine-tuned, unless the DM lies below the weak boson pair-production threshold. As in the MSSM, well-tempered gaugino-Higgsino DM is strongly disfavored by present direct detection results.
Mirage mediation realized in the KKLT flux compactification can naturally suppress the up-type Higgs soft mass at low energy scales, and consequently it can reduce the degree of electroweak fine-tuning up to a loop factor. Interestingly, this feature holds even in high-scale supersymmetry as long as the gauge coupling unification is achieved for light Higgsinos below TeV. Under the experimental constraints on the observed Higgs boson, it turns out that mirage mediation can exhibit low electroweak fine-tuning better than a few percent for stops between about 2 and 6 TeV, i.e., at the same level as in the weak scale supersymmetry, if the Higgsinos are around or below a few hundred GeV.
We explore the scalar phenomenology of a model of electroweak scale neutrinos that incorporates the presence of a lepton number violating singlet scalar. An analysis of the pseudoscalar-Majoron field associated to this singlet field is carried out in order to verify the viability of the model and to restrict its parameter space. In particular we study the Majoron decay $J to u u$ and use the bounds on the Majoron mass and width obtained in a modified Majoron Decaying Dark Matter scenario.
We study the naturalness properties of the $B-L$ Supersymmetric Standard Model (BLSSM) and compare them to those of the Minimal Supersymmetric Standard Model (MSSM) at both low (i.e., Large Hadron Collider) energies and high (i.e., unification) scale s. By adopting standard measures of naturalness, we assess that, in presence of full unification of the additional gauge couplings and scalar/fermionic masses of the BLSSM, such a scenario reveals a somewhat higher degree of Fine-Tuning (FT) than the MSSM, when the latter is computed at the unification scale and all available theoretical and experimental constraints, but the Dark Matter (DM) ones, are taken into account. Yet, such a difference, driven primarily by the collider limits requiring a high mass for the gauge boson associated to the breaking of the additional $U(1)_{B-L}$ gauge group of the BLSSM in addition to the $SU(3)_Ctimes SU(2)_L times U(1)_Y$ of the MSSM, should be regarded as a modest price to pay for the former in relation to the latter, if one notices that the non-minimal scenario offers a significant volume of parameter space where numerous DM solutions of different compositions can be found to the relic density constraints, unlike the case of the minimal structure, wherein only one type of solution is accessible over an ever diminishing parameter space. In fact, this different level of tension within the two SUSY models in complying with current data is well revealed when the FT measure is recomputed in terms of the low energy spectra of the two models, over their allowed regions of parameter space now in presence of all DM bounds, as it is shown that the tendency is now opposite, the BLSSM appearing more natural than the MSSM.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا