ترغب بنشر مسار تعليمي؟ اضغط هنا

Classical scale-invariance, the electroweak scale and vector dark matter

135   0   0.0 ( 0 )
 نشر من قبل Christopher D. Carone
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider a classically scale-invariant extension of the standard model in which a dark, non-Abelian gauge symmetry is spontaneously broken via the Coleman-Weinberg mechanism. Higgs portal couplings between the dark and standard model sectors provide an origin for the Higgs mass squared parameter and, hence, the electroweak scale. We find that choices for model parameters exist in which the dark gauge multiplet is viable as dark matter.



قيم البحث

اقرأ أيضاً

In this work we study a classically scale invariant extension of the Standard Model that can explain simultaneously dark matter and the baryon asymmetry in the universe. In our set-up we introduce a dark sector, namely a non-Abelian SU(2) hidden sect or coupled to the SM via the Higgs portal, and a singlet sector responsible for generating Majorana masses for three right-handed sterile neutrinos. The gauge bosons of the dark sector are mass-degenerate and stable, and this makes them suitable as dark matter candidates. Our model also accounts for the matter-anti-matter asymmetry. The lepton flavour asymmetry is produced during CP-violating oscillations of the GeV-scale right-handed neutrinos, and converted to the baryon asymmetry by the electroweak sphalerons. All the characteristic scales in the model: the electro-weak, dark matter and the leptogenesis/neutrino mass scales, are generated radiatively, have a common origin and related to each other via scalar field couplings in perturbation theory.
We explore the scalar phenomenology of a model of electroweak scale neutrinos that incorporates the presence of a lepton number violating singlet scalar. An analysis of the pseudoscalar-Majoron field associated to this singlet field is carried out in order to verify the viability of the model and to restrict its parameter space. In particular we study the Majoron decay $J to u u$ and use the bounds on the Majoron mass and width obtained in a modified Majoron Decaying Dark Matter scenario.
We compute the decay spectrum for dark matter (DM) with masses above the scale of electroweak symmetry breaking, all the way to the Planck scale. For an arbitrary hard process involving a decay to the unbroken standard model, we determine the prompt distribution of stable states including photons, neutrinos, positrons, and antiprotons. These spectra are a crucial ingredient in the search for DM via indirect detection at the highest energies as being probed in current and upcoming experiments including IceCube, HAWC, CTA, and LHAASO. Our approach improves considerably on existing methods. For example, we include all relevant electroweak interactions. The importance of these effects grow with DM mass, and by an EeV our spectra can differ by orders of magnitude from existing results.
We study classically scale invariant models in which the Standard Model Higgs mass term is replaced in the Lagrangian by a Higgs portal coupling to a complex scalar field of a dark sector. We focus on models that are weakly coupled with the quartic s calar couplings nearly vanishing at the Planck scale. The dark sector contains fermions and scalars charged under dark SU(2) x U(1) gauge interactions. Radiative breaking of the dark gauge group triggers electroweak symmetry breaking through the Higgs portal coupling. Requiring both a Higgs boson mass of 125.5 GeV and stability of the Higgs potential up to the Planck scale implies that the radiative breaking of the dark gauge group occurs at the TeV scale. We present a particular model which features a long-range abelian dark force. The dominant dark matter component is neutral dark fermions, with the correct thermal relic abundance, and in reach of future direct detection experiments. The model also has lighter stable dark fermions charged under the dark force, with observable effects on galactic-scale structure. Collider signatures include a dark sector scalar boson with mass < 250 GeV that decays through mixing with the Higgs boson, and can be detected at the LHC. The Higgs boson, as well as the new scalar, may have significant invisible decays into dark sector particles.
We discuss the possibility to find an upper bound on the seesaw scale using the cosmological bound on the cold dark matter relic density. We investigate a simple relation between the origin of neutrino masses and the properties of a dark matter candi date in a simple theory where the new symmetry breaking scale defines the seesaw scale. Imposing the cosmological bounds, we find an upper bound of order multi-TeV on the lepton number violation scale. We investigate the predictions for direct and indirect detection dark matter experiments, and the possible signatures at the Large Hadron Collider.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا