ﻻ يوجد ملخص باللغة العربية
We theoretically study hydrogen-bonded molecular conductors synthesized recently, $kappa$-H$_3$(Cat-EDT-TTF)$_2$ and its diselena analog, $kappa$-H$_3$(Cat-EDT-ST)$_2$, by first-principles density-functional theory calculations. In these crystals, two H(Cat-EDT-TTF/ST) units share a hydrogen atom with a short O--H--O hydrogen bond. The calculated band structure near the Fermi level shows a quasi-two-dimensional character, with a rather large interlayer dispersion due to the absence of insulating layers in contrast with conventional molecular conductors. We discuss effective low-energy models based on H(Cat-EDT-TTF/ST) units and its dimers, respectively, where the microscopic character of the orbitals composing them are analyzed. Furthermore, we find a stable structure which is different from the experimentally determined structure, where the shared hydrogen atom becomes localized to one of the oxygen atoms, in which charge disproportionation between the two types of H(Cat-EDT-TTF) units is associated. The calculated potential energy surface for the H atom is very shallow near the minimum points, therefore the probability of the H atom can be delocalized between the two O atoms.
We study the electronic and structural properties of the low-temperature ordered phase of hydrogen-bonded molecular conductors, $kappa$-D$_3$(Cat-EDT-TTF)$_2$ and its selenium-substituted analog $kappa$-D$_3$(Cat-EDT-ST)$_2$, by means of first-princi
To verify the effect of geometrical frustration, we artificially distort the triangular lattice of quasi-two-dimensional organic conductor $kappa$-(BEDT-TTF)$_2$Cu$_2$(CN)$_3$ [BEDT-TTF: bis(ethylenedithio)terathiofulvalene] by analogous-molecular su
We employed first-principles density-functional theory (DFT) calculations to characterize Dirac electrons in quasi-two-dimensional molecular conductor $alpha$-(BETS)$_2$I$_3$ [= $alpha$-(BEDT-TSeF)$_2$I$_3$] at a low temperature of 30K. We provide a
The organic charge-transfer salt $kappa$-(BEDT-TTF)$_{2}$Hg(SCN)$_{2}$Br is a quasi two-dimensional metal with a half-filled conduction band at ambient conditions. When cooled below $T=80$ K it undergoes a pronounced transition to an insulating phase
We present high-resolution measurements of the relative length change as a function of temperature of the organic charge-transfer salt $kappa$-(BEDT-TTF)$_2$Hg(SCN)$_2$Cl. We identify anomalous features at $T_g approx,63$ K which can be assigned to a