ترغب بنشر مسار تعليمي؟ اضغط هنا

Exciton Quasi-Condensation in One Dimensional Systems

95   0   0.0 ( 0 )
 نشر من قبل Yochai Werman
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A quasi-exciton condensate is a phase characterized by quasi-long range order of an exciton (electron-hole pair) order parameter. Such a phase can arise naturally in a system of two parallel oppositely doped quantum wires, coupled by repulsive Coulomb interactions. We show that the quasi-exciton condensate phase can be stabilized in an extended range of parameters, in both spinless and spinful systems. For spinful electrons, the exciton phase is shown to be distinct from the usual quasi-long range ordered Wigner crystal phase characterized by power-law density wave correlations. The two phases can be clearly distinguished through their inter-wire tunneling current-voltage characteristics. In the quasi-exciton condensate phase the tunneling conductivity diverges at low temperatures and voltages, whereas in the Wigner crystal it is strongly suppressed. Both phases are characterized by a divergent Coulomb drag at low temperature. Finally, metallic carbon nanotubes are considered as a special case of such a one dimensional setup, and it is shown that exciton condensation is favorable due to the additional valley degree of freedom.

قيم البحث

اقرأ أيضاً

100 - J.P. Eisenstein 2013
The condensation of excitons, bound electron-hole pairs in a solid, into a coherent collective electronic state was predicted over 50 years ago. Perhaps surprisingly, the phenomenon was first observed in a system consisting of two closely-spaced para llel two-dimensional electron gases in a semiconductor double quantum well. At an appropriate high magnetic field and low temperature, the bilayer electron system condenses into a state resembling a superconductor, only with the Cooper pairs replaced by excitons comprised of electrons in one layer bound to holes in the other. In spite of being charge neutral, the transport of excitons within the condensate gives rise to several spectacular electrical effects. This article describes these phenomena and examines how they inform our understanding of this unique phase of quantum electronic matter.
61 - M. Crisan , I. Tifrea 2005
We present a low energy model for the Bose-Einstein condensation in a quasi-two-dimensional excitonic gas. Using the flow equations of the Renormalization group and a $Phi^4$ model with the dynamical critical exponent $z=2$ we calculate the temperatu re dependence of the critical density, coherence length, magnetic susceptibility, and specific heat. The model can be relevant for the macroscopic coherence observed in GaAs/AlGaAs coupled quantum wells.
201 - A.V. Plyukhin 2005
In the conventional theory of hopping transport the positions of localized electronic states are assumed to be fixed, and thermal fluctuations of atoms enter the theory only through the notion of phonons. On the other hand, in 1D and 2D lattices, whe re fluctuations prevent formation of long-range order, the motion of atoms has the character of the large scale diffusion. In this case the picture of static localized sites may be inadequate. We argue that for a certain range of parameters, hopping of charge carriers among localization sites in a network of 1D chains is a much slower process than diffusion of the sites themselves. Then the carriers move through the network transported along the chains by mobile localization sites jumping occasionally between the chains. This mechanism may result in temperature independent mobility and frequency dependence similar to that for conventional hopping.
One-dimensional systems often possess multiple channels or bands arising from the excitation of transverse degrees of freedom. In the present work, we study the specific processes that dominate the equilibration of multi-channel Fermi gases at low te mperatures. Focusing on the case of two channels, we perform an analysis of the relaxation properties of these systems by studying the spectrum and eigenmodes of the linearized collision integral. As an application of this analysis, a detailed calculation of the bulk viscosity is presented. The dominant scattering processes obey an unexpected conservation law which is likely to affect the hydrodynamic behavior of these systems.
139 - S. T. Chui , Ning Wang , 2020
We propose a state of excitonic solid for double layer two dimensional electron hole systems in transition metal dicalcogenides stacked on opposite sides of thin layers of BN. Properties of the exciton lattice such as its Lindemann ratio and possible supersolid behaviour are studied. We found that the solid can be stabilized relative to the fluid by the potential due to the BN.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا