ترغب بنشر مسار تعليمي؟ اضغط هنا

Equilibration of Quasi-One-Dimensional Fermi Gases

81   0   0.0 ( 0 )
 نشر من قبل Wade DeGottardi
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

One-dimensional systems often possess multiple channels or bands arising from the excitation of transverse degrees of freedom. In the present work, we study the specific processes that dominate the equilibration of multi-channel Fermi gases at low temperatures. Focusing on the case of two channels, we perform an analysis of the relaxation properties of these systems by studying the spectrum and eigenmodes of the linearized collision integral. As an application of this analysis, a detailed calculation of the bulk viscosity is presented. The dominant scattering processes obey an unexpected conservation law which is likely to affect the hydrodynamic behavior of these systems.


قيم البحث

اقرأ أيضاً

163 - Erhai Zhao , W. Vincent Liu 2008
We present a theory for a lattice array of weakly coupled one-dimensional ultracold attractive Fermi gases (1D `tubes) with spin imbalance, where strong intratube quantum fluctuations invalidate mean field theory. We first construct an effective fiel d theory, which treats spin-charge mixing exactly, based on the Bethe ansatz solution of the 1D single tube problem. We show that the 1D Fulde-Ferrel-Larkin-Ovchinnikov (FFLO) state is a two-component Luttinger liquid, and its elementary excitations are fractional states carrying both charge and spin. We analyze the instability of the 1D FFLO state against inter-tube tunneling by renormalization group analysis, and find that it flows into either a polarized Fermi liquid or a FFLO superfluid, depending on the magnitude of interaction strength and spin imbalance. We obtain the phase diagram of the quasi-1D system and further determine the scaling of the superfluid transition temperature with intertube coupling.
Equilibration of a one-dimensional system of interacting electrons requires processes that change the numbers of left- and right-moving particles. At low temperatures such processes are strongly suppressed, resulting in slow relaxation towards equili brium. We study this phenomenon in the case of spinless electrons with strong long-range repulsion, when the electrons form a one-dimensional Wigner crystal. We find the relaxation rate by accounting for the Umklapp scattering of phonons in the crystal. For the integrable model of particles with inverse-square repulsion, the relaxation rate vanishes.
In this letter we consider dipolar quantum gases in a quasi-one-dimensional tube with dipole moment perpendicular to the tube direction. We deduce the effective one-dimensional interaction potential and show that this potential is not purely repulsiv e, but rather has an attractive part due to high-order scattering processes through transverse excited states. The attractive part can induce bound state and cause scattering resonances. This represents the dipole induced resonance in low-dimension. We work out an unconventional behavior of low-energy phase shift for this effective potential and show how it evolves across a resonance. Based on the phase shift, the interaction energy of spinless bosons is obtained using asymptotic Bethe ansatz. Despite of long-range nature of dipolar interaction, we find that a behavior similar as short-range Lieb-Linger gas emerges at the resonance regime.
271 - W. Li , A. Dhar , X. Deng 2019
One-dimensional polar gases in deep optical lattices present a severely constrained dynamics due to the interplay between dipolar interactions, energy conservation, and finite bandwidth. The appearance of dynamically-bound nearest-neighbor dimers enh ances the role of the $1/r^3$ dipolar tail, resulting, in the absence of external disorder, in quasi-localization via dimer clustering for very low densities and moderate dipole strengths. Furthermore, even weak dipoles allow for the formation of self-bound superfluid lattice droplets with a finite doping of mobile, but confined, holons. Our results, which can be extrapolated to other power-law interactions, are directly relevant for current and future lattice experiments with magnetic atoms and polar molecules.
98 - Mingyuan He , Qi Zhou 2021
The length scale separation in dilute quantum gases in quasi-one- or quasi-two-dimensional traps has spatially divided the system into two different regimes. Whereas universal relations defined in strictly one or two dimensions apply in a scale that is much larger than the characteristic length of the transverse confinements, physical observables in the short distances are inevitably governed by three-dimensional contacts. Here, we show that $p$-wave contacts defined in different length scales are intrinsically connected by a universal relation, which depends on a simple geometric factor of the transverse confinements. While this universal relation is derived for one of the $p$-wave contacts, it establishes a concrete example of how dimensional crossover interplays with contacts and universal relations for arbitrary partial wave scatterings.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا