ترغب بنشر مسار تعليمي؟ اضغط هنا

Chemical pressure effect on superconductivity of BiS2-based Ce1-xNdxO1-yFyBiS2 and Nd1-zSmzO1-yFyBiS2

54   0   0.0 ( 0 )
 نشر من قبل Joe Kajitani
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have systematically investigated the crystal structure and the magnetic properties of BiS2-based superconductor Ce1-xNdxO1-yFyBiS2 (x = 0 - 1.0, y = 0.3, 0.5 and 0.7) and Nd1-zSmzO1-yFyBiS2 (x = 0 - 0.8, y = 0.3, 0.5 and 0.7). In the REOBiS2 system, both crystal structure and physical properties are tunable by mixing the RE (RE = rare earth) site with Ce, Nd and Sm due to the difference of ionic radius of RE. In the Ce1-xNdxO1-yFyBiS2 system, bulk superconductivity is observed for x = 1.0 with y = 0.3 and x = 0.5 - 1.0 with y = 0.5. The transition temperature (Tc) increases with increasing Nd concentration. The highest Tc is 4.8 K for x = 1.0 with y = 0.5 in the Ce1-xNdxO1-yFyBiS2 system. By the Nd substitution for Ce, lattice contraction along the a axis is generated while the c axis does not show a remarkable dependence on Nd concentration. The lattice constant of c decreases with increasing F concentration. Furthermore, we found that the Nd site can be replaced by smaller Sm ions up to z = 0.8 in Nd1-zSmzO1-yFyBiS2. Bulk superconductivity is observed within z = 0 - 0.8 for y = 0.3 and z = 0 - 0.6 for y = 0.5. The Tc increases with increasing Sm concentration. The highest Tc is 5.6 K for z = 0.8 with y = 0.3. With increasing Sm concentration, the lattice constant of a decreases while the lattice constants of c does not show a remarkable dependence on Sm concentration. We found that the chemical pressure generated by systematic solution of the RE site in the blocking layer commonly induces lattice contraction along the a axis in Ce1-xNdxO1-yFyBiS2 and Nd1-zSmzO1-yFyBiS2. The obtained results indicate that both optimal F concentration and uniaxial lattice contraction along the a axis generated by chemical pressure are essential for the inducement of bulk superconductivity in the REO1-yFyBiS2 system.

قيم البحث

اقرأ أيضاً

We investigate the external hydrostatic pressure effect on the superconducting transition temperature (Tc) of new layered superconductors Bi4O4S3 and NdO0.5F0.5BiS2. Though the Tc is found to have moderate decrease from 4.8 K to 4.3 K (dTconset/dP = -0.28 K/GPa) for Bi4O4S3 superconductor, the same increases from 4.6 K to 5 K (dTconset/dP = 0.44 K/GPa) upto 1.31 GPa followed by a sudden decrease from 5 K to 4.7 K upto 1.75 GPa for NdO0.5F0.5BiS2 superconductor. The variation of Tc in these systems may be correlated to increase or decrease of the charge carriers in the density of states under externally applied pressure.
We report the electrical resistivity measurements under pressure for the recently discovered BiS2-based layered superconductors Bi4O4S3 and La(O,F)BiS2. In Bi4O4S3, the transition temperature Tc decreases monotonically without a distinct change in th e metallic behavior in the normal state. In La(O,F)BiS2, on the other hand, Tc initially increases with increasing pressure and then decreases above ? 1 GPa. The semiconducting behavior in the normal state is suppressed markedly and monotonically, whereas the evolution of Tc is nonlinear. The strong suppression of the semiconducting behavior without doping in La(O,F)BiS2 suggests that the Fermi surface is located in the vicinity of some instability. In the present study, we elucidate that the superconductivity in the BiS2 layer favors the Fermi surface at the boundary between the semiconducting and metallic behaviors.
We study the impact of hydrostatic pressure on superconductivity of new BiS2 based layered REO0.5F0.5BiS2 (RE-La, Pr, and Nd) compounds through the measurements of dc electrical resistivity. The REO0.5F0.5BiS2 (RE-La, Pr and Nd) compounds synthesized by solid state reaction route via vacuum encapsulation are crystallized in the tetragonal P4/nmm space group. At ambient pressure the superconducting transition onset temperatures are 2.7K, 3.5K and 4.5K which are enhanced substantially under external hydrostatic pressure to 10.5K, 7.8K and 7.5K for LaO0.5F0.5BiS2, PrO0.5F0.5BiS2 and NdO0.5F0.5BiS2 respectively at 1.68GPa. The normal state electrical resistivity decreases with applied pressure for REO0.5F0.5BiS2 (RE-La, Pr and Nd). The electrical resistivity under magnetic field and applied pressure has been measured to estimate upper critical field, the values of which are 15.9Tesla, 8.8Tesla and 8.2Tesla for LaO0.5F0.5BiS2, PrO0.5F0.5BiS2 and NdO0.5F0.5BiS2 compounds. Substantial enhancement of superconductivity under moderate pressures in studied new BiS2 based superconductors call for the attention of condensed matter physics community.
We have successfully synthesized a new BiS2-based superconductor NdOBiS2 with F-doping. This compound is composed of superconducting BiS2 layers and blocking NdO layers, which indicates that the BiS2 layer is the one of the common superconducting lay ers like the CuO2 layer of cuprates or Fe-As layer of Fe-based superconductors. We can obtain NdO1-xFxBiS2 with bulk superconductivity by a solid-state reaction under ambient pressure. Therefore, NdO1-xFxBiS2 should be the suitable material to elucidate the mechanism of superconductivity in the BiS2-layer.
Pressure effect on superconducting properties of two YB6 samples (Tc = 5.9 and 7.5 K) were investigated by measurements of electrical resistivity, magnetic susceptibility, and X-ray diffraction in the pressure range up to 320 kbar. Magnetoresistivity measurements down to 60 mK and up to 47 kbar have shown a negative pressure effect on Tc as well as on the third critical field Hc3 with the slopes dlnTc/dp = -0.59%/kbar and dlnHc3/dp = -1.1%/kbar, respectively. The magnetic susceptibility measurements evidenced that the slope of dlnTc/dp gradually decreases with pressure reaching 3 times smaller value at 112 kbar. The lattice parameter measurements revealed the volume reduction of 14% at 320 kbar. The pressure-volume dependence is described by the Rose-Vinet equation of state. The obtained relative volume dependence dlnTc/dlnV analyzed by the McMillan formula for Tc indicates that the reduction of the superconducting transition temperature is mainly due to hardening of the Einstein-like phonon mode responsible for the superconducting coupling. This is confirmed by the analysis of the resistivity measurements in the normal state up to T = 300 K performed at pressures up to 28 kbar.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا