ﻻ يوجد ملخص باللغة العربية
We state Asymptotic Expansion and Growth Rate conjectures for the Witten-Reshetikhin-Turaev invariants of arbitrary framed links in 3-manifolds, and we prove these conjectures for the natural links in mapping tori of finite-order automorphisms of marked surfaces. Our approach is based upon geometric quantisation of the moduli space of parabolic bundles on the surface, which we show coincides with the construction of the Witten-Reshetikhin-Turaev invariants using conformal field theory, as was recently completed by Andersen and Ueno.
We identify the leading order term of the asymptotic expansion of the Witten-Reshetikhin-Turaev invariants for finite order mapping tori with classical invariants for all simple and simply-connected compact Lie groups. The square root of the Reidemei
Kashaev and Reshetikhin previously described a way to define holonomy invariants of knots using quantum $mathfrak{sl}_2$ at a root of unity. These are generalized quantum invariants depend both on a knot $K$ and a representation of the fundamental gr
We specialise the construction of orbifold graph TQFTs introduced in Carqueville et al., arXiv:2101.02482 to Reshetikhin-Turaev defect TQFTs. We explain that the modular fusion category ${mathcal{C}}_{mathcal{A}}$ constructed in Muleviv{c}ius-Runkel,
Let $text{Mod}(S_g)$ be the mapping class group of the closed orientable surface $S_g$ of genus $ggeq 2$. In this paper, we derive necessary and sufficient conditions for two finite-order mapping classes to have commuting conjugates in $text{Mod}(S_g
Dabkowski and Sahi defined an invariant of a link in the $3$-sphere, which is preserved under $4$-moves. This invariant is a quotient of the fundamental group of the complement of the link. It is generally difficult to distinguish the Dabkowski-Sahi