ترغب بنشر مسار تعليمي؟ اضغط هنا

The Witten-Reshetikhin-Turaev invariants of finite order mapping tori II

142   0   0.0 ( 0 )
 نشر من قبل Benjamin Himpel
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We identify the leading order term of the asymptotic expansion of the Witten-Reshetikhin-Turaev invariants for finite order mapping tori with classical invariants for all simple and simply-connected compact Lie groups. The square root of the Reidemeister torsion is used as a density on the moduli space of flat connections and the leading order term is identified with the integral over this moduli space of this density weighted by a certain phase for each component of the moduli space. We also identify this phase in terms of classical invariants such as Chern-Simons invariants, eta invariants, spectral flow and the rho invariant. As a result, we show agreement with the semiclassical approximation as predicted by the method of stationary phase.



قيم البحث

اقرأ أيضاً

We state Asymptotic Expansion and Growth Rate conjectures for the Witten-Reshetikhin-Turaev invariants of arbitrary framed links in 3-manifolds, and we prove these conjectures for the natural links in mapping tori of finite-order automorphisms of mar ked surfaces. Our approach is based upon geometric quantisation of the moduli space of parabolic bundles on the surface, which we show coincides with the construction of the Witten-Reshetikhin-Turaev invariants using conformal field theory, as was recently completed by Andersen and Ueno.
Kashaev and Reshetikhin previously described a way to define holonomy invariants of knots using quantum $mathfrak{sl}_2$ at a root of unity. These are generalized quantum invariants depend both on a knot $K$ and a representation of the fundamental gr oup of its complement into $mathrm{SL}_2(mathbb{C})$; equivalently, we can think of $mathrm{KR}(K)$ as associating to each knot a function on (a slight generalization of) its character variety. In this paper we clarify some details of their construction. In particular, we show that for $K$ a hyperbolic knot $mathrm{KaRe}(K)$ can be viewed as a function on the geometric component of the $A$-polynomial curve of $K$. We compute some examples at a third root of unity.
106 - David R. Morrison 2016
We give a pedagogical review of the computation of Gromov-Witten invariants via localization in 2D gauged linear sigma models. We explain the relationship between the two-sphere partition function of the theory and the Kahler potential on the conform al manifold. We show how the Kahler potential can be assembled from classical, perturbative, and non-perturbative contributions, and explain how the non-perturbative contributions are related to the Gromov-Witten invariants of the corresponding Calabi-Yau manifold. We then explain how localization enables efficient calculation of the two-sphere partition function and, ultimately, the Gromov-Witten invariants themselves.
The Turaev-Viro invariants are a powerful family of topological invariants for distinguishing between different 3-manifolds. They are invaluable for mathematical software, but current algorithms to compute them require exponential time. The invaria nts are parameterised by an integer $r geq 3$. We resolve the question of complexity for $r=3$ and $r=4$, giving simple proofs that computing Turaev-Viro invariants for $r=3$ is polynomial time, but for $r=4$ is #P-hard. Moreover, we give an explicit fixed-parameter tractable algorithm for arbitrary $r$, and show through concrete implementation and experimentation that this algorithm is practical---and indeed preferable---to the prior state of the art for real computation.
We use the construction of unfolded Seiberg-Witten Floer spectra of general 3-manifolds defined in our previous paper to extend the notion of relative Bauer-Furuta invariants to general 4-manifolds with boundary. One of the main purposes of this pape r is to give a detailed proof of the gluing theorem for the relative invariants.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا