ﻻ يوجد ملخص باللغة العربية
In this paper we introduce the Schutzenberger category $mathbb D(S)$ of a semigroup $S$. It stands in relation to the Karoubi envelope (or Cauchy completion) of $S$ in the same way that Schutzenberger groups do to maximal subgroups and that the local divisors of Diekert do to the local monoids $eSe$ of $S$ with $ein E(S)$. In particular, the objects of $mathbb D(S)$ are the elements of $S$, two objects of $mathbb D(S)$ are isomorphic if and only if the corresponding semigroup elements are $mathscr D$-equivalent, the endomorphism monoid at $s$ is the local divisor in the sense of Diekert and the automorphism group at $s$ is the Schutzenberger group of the $mathscr H$-class of $S$. This makes transparent many well-known properties of Greens relations. The paper also establishes a number of technical results about the Karoubi envelope and Schutzenberger category that were used by the authors in a companion paper on syntactic invariants of flow equivalence of symbolic dynamical systems.
We prove that a family of at least two non-trivial, almost-connected locally compact groups cannot have a coproduct in the category of locally compact groups if at least one of the groups is connected; this confirms the intuition that coproducts in s
Starting with a k-linear or DG category admitting a (homotopy) Serre functor, we construct a k-linear or DG 2-category categorifying the Heisenberg algebra of the numerical K-group of the original category. We also define a 2-categorical analogue of
The cyclic graph $Gamma(S)$ of a semigroup $S$ is the simple graph whose vertex set is $S$ and two vertices $x, y$ are adjacent if the subsemigroup generated by $x$ and $y$ is monogenic. In this paper, we classify the semigroup $S$ such that whose cy
The enhanced power graph $mathcal P_e(S)$ of a semigroup $S$ is a simple graph whose vertex set is $S$ and two vertices $x,y in S$ are adjacent if and only if $x, y in langle z rangle$ for some $z in S$, where $langle z rangle$ is the subsemigroup ge
We propose a definition of the category of hybrid systems in which executions are special types of morphisms. Consequently morphisms of hybrid systems send executions to executions. We plan to use this result to define and study networks of hybrid systems.