ترغب بنشر مسار تعليمي؟ اضغط هنا

On the dearth of coproducts in the category of locally compact groups

76   0   0.0 ( 0 )
 نشر من قبل Alexandru Chirv\\u{a}situ L.
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We prove that a family of at least two non-trivial, almost-connected locally compact groups cannot have a coproduct in the category of locally compact groups if at least one of the groups is connected; this confirms the intuition that coproducts in said category are rather hard to come by, save for the usual ones in the category of discrete groups. Along the way we also prove a number of auxiliary results on characteristic indices of locally compact or Lie groups as defined by Iwasawa: that characteristic indices can only decrease when passing to semisimple closed Lie subgroups, and also along dense-image morphisms.



قيم البحث

اقرأ أيضاً

Suppose that $X=G/K$ is the quotient of a locally compact group by a closed subgroup. If $X$ is locally contractible and connected, we prove that $X$ is a manifold. If the $G$-action is faithful, then $G$ is a Lie group.
The purpose of this survey is to describe how locally compact groups can be studied as geometric objects. We will emphasize the main ideas and skip or just sketch most proofs, often referring the reader to our much more detailed book arXiv:1403.3796
We give some new characterizations of exactness for locally compact second countable groups. In particular, we prove that a locally compact second countable group is exact if and only if it admits a topologically amenable action on a compact Hausdorf f space. This answers an open question by Anantharaman-Delaroche.
We announce various results concerning the structure of compactly generated simple locally compact groups. We introduce a local invariant, called the structure lattice, which consists of commensurability classes of compact subgroups with open normali ser, and show that its properties reflect the global structure of the ambient group.
Starting with a k-linear or DG category admitting a (homotopy) Serre functor, we construct a k-linear or DG 2-category categorifying the Heisenberg algebra of the numerical K-group of the original category. We also define a 2-categorical analogue of the Fock space representation of the Heisenberg algebra. Our construction generalises and unifies various categorical Heisenberg algebra actions appearing in the literature. In particular, we give a full categorical enhancement of the action on derived categories of symmetric quotient stacks introduced by Krug, which itself categorifies a Heisenberg algebra action proposed by Grojnowski.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا