ترغب بنشر مسار تعليمي؟ اضغط هنا

Role of Self-Assembled Monolayers on Improved Electrical Stability of Amorphous In-Ga-Zn-O Thin-Film Transistors

114   0   0.0 ( 0 )
 نشر من قبل Xiaosong Du
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Self-assembled monolayers (SAMs) have been used to improve both the positive and negative bias-stress stability of amorphous indium gallium zinc oxide (IGZO) bottom gate thin film transistors (TFTs). N-hexylphosphonic acid (HPA) and fluorinated hexylphosphonic acid (FPA) SAMs adsorbed on IGZO back channel surfaces were shown to significantly reduce bias stress turn-on voltage shifts compared to IGZO back channel surfaces with no SAMs. FPA was found to have a lower surface energy and lower packing density than HPA, as well as lower bias stress turn-on voltage shifts. The improved stability of IGZO TFTs with SAMs can be primarily attributed to a reduction in molecular adsorption of contaminants on the IGZO back channel surface and minimal trapping states present with phosphonic acid binding to the IGZO surface.



قيم البحث

اقرأ أيضاً

The sub-gap density of states of amorphous indium gallium zinc oxide ($a$-IGZO) is obtained using the ultrabroadband photoconduction (UBPC) response of thin-film transistors (TFTs). Density functional theory simulations classify the origin of the mea sured sub-gap density of states peaks as a series of donor-like oxygen vacancy states and acceptor-like Zn vacancy states. Donor peaks are found both near the conduction band and deep in the sub-gap, with peak densities of $10^{17}-10^{18}$ cm$^{-3}$eV$^{-1}$. Two deep acceptor-like metal vacancy peaks with peak densities in the range of $10^{18}$ cm$^{-3}$eV$^{-1}$ and lie adjacent to the valance band Urbach tail region at 2.0 to 2.5 eV below the conduction band edge. By applying detailed charge balance, we show increasing the density of metal vacancy deep-acceptors strongly shifts the $a$-IGZO TFT threshold voltage to more positive values. Photoionization (h$ u$ > 2.0 eV) of metal vacancy acceptors is one cause of transfer curve hysteresis in $a$-IGZO TFTs owing to longer recombination lifetimes as they get captured into acceptor-like vacancies.
The surface conductivity is measured by a four-probe technique for pentacene and rubrene single-crystals laminated on polarized and nearly unpolarized molecular monolayers with application of perpendicular electric fields. The polarization of the sel f-assembled monolayers (SAMs) shifts the threshold gate voltage, while maintaining a very low subthreshold swing of the single-crystal devices (0.11 V/decade). The results, excluding influences of parasitic contacts and grain boundaries, demonstrate SAM-induced nanoscale charge injection up to ~10^12 cm^-2 at the surface of the organic single crystals.
High throughput experimental methods are known to accelerate the rate of research, development, and deployment of electronic materials. For example, thin films with lateral gradients in composition, thickness, or other parameters have been used along side spatially-resolved characterization to assess how various physical factors affect material properties under varying measurement conditions. Similarly, multi-layer electronic devices that contain such graded thin films as one or more of their layers can also be characterized spatially in order to optimize the performance. In this work, we apply these high throughput experimental methods to thin film transistors (TFTs), demonstrating combinatorial device fabrication and semi-automated characterization using sputtered Indium-Gallium-Zinc-Oxide (IGZO) TFTs as a case study. We show that both extrinsic and intrinsic types of device gradients can be generated in a TFT library, such as channel thickness and length, channel cation compositions, and oxygen atmosphere during deposition. We also present a semi-automated method to measure the 44 devices fabricated on a 50x50mm substrate that can help to identify properly functioning TFTs in the library and finish the measurement in a short time. Finally, we propose a fully automated characterization system for similar TFT libraries, which can be coupled with high throughput data analysis. These results demonstrate that high throughput methods can accelerate the investigation of TFTs and other electronic devices.
72 - Iddo Amit 2017
Transient currents in atomically thin MoTe$_2$ field-effect transistor are measured during cycles of pulses through the gate electrode. The transients are analyzed in light of a newly proposed model for charge trapping dynamics that renders a time-de pendent change in threshold voltage the dominant effect on the channel hysteretic behavior over emission currents from the charge traps. The proposed model is expected to be instrumental in understanding the fundamental physics that governs the performance of atomically thin FETs and is applicable to the entire class of atomically thin-based devices. Hence, the model is vital to the intelligent design of fast and highly efficient opto-electronic devices.
195 - Adam M. Weidling 2021
Fabricating high-performance and/or high-density flexible electronics on plastic substrates is often limited by the poor dimensional stability of polymer substrates. This can be mitigated by using glass carriers during fabrication, but removing the p lastic substrate from a large-area carrier without damaging the electronics remains challenging. Here we present a large-area photonic lift-off (PLO) process to rapidly separate polymer films from rigid carriers. PLO uses a 150 microsecond pulse of broadband light from flashlamps to lift off functional thin films from a glass carrier substrate coated with a light-absorber layer (LAL). A 3D finite element model indicates that the polymer/LAL interface reaches 865 degrees C during PLO, but the top surface of the PI reaches only 118 degrees C. To demonstrate the feasibility of this process in the production of flexible electronics, an array of indium zinc oxide (IZO) thin-film transistors (TFTs) was fabricated on a polyimide substrate and then photonically lifted off from the glass carrier. The TFT mobility was 3.15 cm2V-1s-1 before and after PLO, indicating no significant change during PLO. The flexible TFTs were mechanically robust, with no reduction in mobility while bent. The PLO process can offer unmatched high-throughput solutions in large-area flexible electronics production.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا