ترغب بنشر مسار تعليمي؟ اضغط هنا

VLA and GBT Observations of Orion B (NGC 2024, W12) : Photo-dissociation Region Properties and Magnetic field

246   0   0.0 ( 0 )
 نشر من قبل D. Anish Roshi
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English
 تأليف D. Anish Roshi




اسأل ChatGPT حول البحث

We present images of C110$alpha$ and H110$alpha$ radio recombination line (RRL) emission at 4.8 GHz and images of H166$alpha$, C166$alpha$ and X166$alpha$ RRL emission at 1.4 GHz, observed toward the starforming region NGC 2024. The 1.4 GHz image with angular resolution $sim$ 70arcsec is obtained using VLA data. The 4.8 GHz image with angular resolution $sim$ 17arcsec is obtained by combining VLA and GBT data. The similarity of the LSR velocity (10.3 kms) of the C110$alpha$ line to that of lines observed from molecular material located at the far side of the HII region suggests that the photo dissociation region (PDR) responsible for C110$alpha$ line emission is at the far side. The LSR velocity of C166$alpha$ is 8.8 kms. This velocity is comparable with the velocity of molecular absorption lines observed from the foreground gas, suggesting that the PDR is at the near side of the HII region. Non-LTE models for carbon line forming regions are presented. Typical properties of the foreground PDR are $T_{PDR} sim 100$ K, $n_e^{PDR} sim 5$ cmthree, $n_H sim 1.7 times 10^4$ cmthree, path length $l sim 0.06$ pc and those of the far side PDR are $T_{PDR} sim$ 200 K, $n_e^{PDR} sim$ 50 cmthree, $n_H sim 1.7 times 10^5$ cmthree, $l sim$ 0.03 pc. Our modeling indicates that the far side PDR is located within the HII region. We estimate magnetic field strength in the foreground PDR to be 60 $mu$G and that in the far side PDR to be 220 $mu$G. Our field estimates compare well with the values obtained from OH Zeeman observations toward NGC 2024.

قيم البحث

اقرأ أيضاً

We present new H I imaging and spectroscopy of the 14 UV-selected star-forming galaxies in the Lyman Alpha Reference Sample (LARS), aimed for a detailed study of the processes governing the production, propagation, and escape of Ly$alpha$ photons. Ne w H I spectroscopy, obtained with the 100m Green Bank Telescope (GBT), robustly detects the H I spectral line in 11 of the 14 observed LARS galaxies (although the profiles of two of the galaxies are likely confused by other sources within the GBT beam); the three highest redshift galaxies are not detected at our current sensitivity limits. The GBT profiles are used to derive fundamental H I line properties of the LARS galaxies. We also present new pilot H I spectral line imaging of 5 of the LARS galaxies obtained with the Karl G. Jansky Very Large Array (VLA). This imaging localizes the H I gas and provides a measurement of the total H I mass in each galaxy. In one system, LARS 03 (UGC 8335 or Arp 238), VLA observations reveal an enormous tidal structure that extends over 160 kpc from the main interacting systems and that contains $>$10$^9$ M$_{odot}$ of H I. We compare various H I properties with global Ly$alpha$ quantities derived from HST measurements. The measurements of the Ly$alpha$ escape fraction are coupled with the new direct measurements of H I mass and significantly disturbed H I velocities. Our robustly detected sample reveals that both total H I mass and linewidth are tentatively correlated with key Ly$alpha$ tracers. Further, on global scales, these data support a complex coupling between Ly$alpha$ propagation and the H I properties of the surrounding medium.
We used the Submillimeter Array (SMA) to observe the thermal polarized dust emission from the protostellar source NGC 2024 FIR 5. The polarized emission outlines a partial hourglass morphology for the plane-of-sky component of the core magnetic field . Our data are consistent with previous BIMA maps, and the overall magnetic field geometries obtained with both instruments are similar. We resolve the main core into two components, FIR 5A and FIR 5B. A possible explanation for the asymmetrical field lies in depolarization effects due to the lack of internal heating from FIR 5B source, which may be in a prestellar evolutionary state. The field strength was estimated to be 2.2 mG, in agreement with previous BIMA data. We discuss the influence of a nearby H{sc ii} region over the field lines at scales of $sim 0.01$ pc. Although the hot component is probably compressing the molecular gas where the dust core is embedded, it is unlikely that the radiation pressure exceeds the magnetic tension. Finally, a complex outflow morphology is observed in CO (3 $rightarrow$ 2) maps. Unlike previous maps, several features associated with dust condensations other than FIR 5 are detected.
We performed new comprehensive $^{13}$CO($J$=2--1) observations toward NGC 2024, the most active star forming region in Orion B, with an angular resolution of $sim$100 obtained with NANTEN2. We found that the associated cloud consists of two independ ent velocity components. The components are physically connected to the H{sc ii} region as evidenced by their close correlation with the dark lanes and the emission nebulosity. The two components show complementary distribution with a displacement of $sim$0.6 pc. Such complementary distribution is typical to colliding clouds discovered in regions of high-mass star formation. We hypothesize that a cloud-cloud collision between the two components triggered the formation of the late O-type stars and early B stars localized within 0.3 pc of the cloud peak. The duration time of the collision is estimated to be 0.3 million years from a ratio of the displacement and the relative velocity $sim$3 km s$^{-1}$ corrected for probable projection. The high column density of the colliding cloud $sim$10$^{23}$ cm$^{-2}$ is similar to those in the other high-mass star clusters in RCW 38, Westerlund 2, NGC 3603, and M42, which are likely formed under trigger by cloud-cloud collision. The present results provide an additional piece of evidence favorable to high-mass star formation by a major cloud-cloud collision in Orion.
Compared to their centimeter-wavelength counterparts, millimeter recombination lines (RLs) are intrinsically brighter and are free of pressure broadening. We report observations of RLs (H30alpha at 231.9 GHz, H53alpha at 42.9 GHz) and the millimeter and centimeter continuum toward the Becklin-Neugebauer (BN) object in Orion, obtained from the Atacama Large Millimeter/submillimeter Array (ALMA) Science Verification archive and the Very Large Array (VLA). The RL emission appears to be arising from the slowly-moving, dense (Ne=8.4x10^6 cm^-3) base of the ionized envelope around BN. This ionized gas has a relatively low electron temperature (Te<4900 K) and small (<<10 km s^-1) bulk motions. Comparing our continuum measurements with previous (non)detections, it is possible that BN has large flux variations in the millimeter. However, dedicated observations with a uniform setup are needed to confirm this. From the H30alpha line, the central line-of-sight LSR velocity of BN is 26.3 km s^-1.
We present very long baseline interferometry (VLBI) observations of 179 radio sources in the COSMOS field with extremely high sensitivity using the Green Bank Telescope (GBT) together with the Very Long Baseline Array (VLBA) (VLBA+GBT) at 1.4 GHz, to explore the faint radio population in the flux density regime of tens of $mu$Jy. Here, the identification of active galactic nuclei (AGN) is based on the VLBI detection of the source, i.e., it is independent of X-ray or infrared properties. The milli-arcsecond resolution provided by the VLBI technique implies that the detected sources must be compact and have large brightness temperatures, and therefore they are most likely AGN (when the host galaxy is located at z$geq$0.1). On the other hand, this technique allows us to only positively identify when a radio-active AGN is present, i.e., we cannot affirm that there is no AGN when the source is not detected. For this reason, the number of identified AGN using VLBI should be always treated as a lower limit. We present a catalogue containing the 35 radio sources detected with the VLBA+GBT, 10 of which were not previously detected using only the VLBA. We have constructed the radio source counts at 1.4 GHz using the samples of the VLBA and VLBA+GBT detected sources of the COSMOS field to determine a lower limit for the AGN contribution to the faint radio source population. We found an AGN contribution of >40-75% at flux density levels between 150 $mu$Jy and 1 mJy. This flux density range is characterised by the upturn of the Euclidean-normalised radio source counts, which implies a contribution of a new population. This result supports the idea that the sub-mJy radio population is composed of a significant fraction of radio-emitting AGN, rather than solely by star-forming galaxies, in agreement with previous studies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا