ﻻ يوجد ملخص باللغة العربية
We examine the nonlinear structure of gravitationally collapsed objects that form in our simulations of wavelike cold dark matter ($psi$DM), described by the Schr{o}dinger-Poisson (SP) equation with a particle mass $sim 10^{-22} {rm eV}$. A distinct gravitationally self-bound solitonic core is found at the center of every halo, with a profile quite different from cores modeled in the warm or self-interacting dark matter scenarios. Furthermore, we show that each solitonic core is surrounded by an extended halo composed of large fluctuating dark matter granules which modulate the halo density on a scale comparable to the diameter of the solitonic core. The scaling symmetry of the SP equation and the uncertainty principle tightly relate the core mass to the halo specific energy, which, in the context of cosmological structure formation, leads to a simple scaling between core mass ($M_c$) and halo mass ($M_h$), $M_c propto a^{-1/2} M_h^{1/3}$, where $a$ is the cosmic scale factor. We verify this scaling relation by (i) examining the internal structure of a statistical sample of virialized halos that form in our 3D cosmological simulations, and by (ii) merging multiple solitons to create individual virialized objects. Sufficient simulation resolution is achieved by adaptive mesh refinement and graphic processing units acceleration. From this scaling relation, present dwarf satellite galaxies are predicted to have kpc sized cores and a minimum mass of $sim 10^8 {M_odot}$, capable of solving the small-scale controversies in the cold dark matter model. Moreover, galaxies of $2times10^{12} {M_odot}$ at $z=8$ should have massive solitonic cores of $sim 2times10^9 {M_odot}$ within $sim 60 {rm pc}$. Such cores can provide a favorable local environment for funneling the gas that leads to the prompt formation of early stellar spheroids and quasars.
The newly established luminosity functions of high-z galaxies at $4 lesssim z lesssim 10$ can provide a stringent check on dark matter models that aim to explain the core properties of dwarf galaxies. The cores of dwarf spheroidal galaxies are unders
Globular clusters (GCs) are bright objects that span a wide range of galactocentric distances, and are thus probes of the structure of dark matter (DM) haloes. In this work, we explore whether the projected radial profiles of GCs can be used to infer
A recently discovered young, high-velocity giant star J01020100-7122208 is a good candidate of hypervelocity star ejected from the Galactic center, although it has a bound orbit. If we assume that this star was ejected from the Galactic center, it ca
The cusp-core problem is one of the main challenges of the cold dark matter paradigm on small scales: the density of a dark matter halo is predicted to rise rapidly toward the center as rho ~ r^alpha with alpha between -1 and -1.5, while such a cuspy
The NGC 1052 group, and in particular the discovery of two ultra diffuse galaxies with very low internal velocity dispersions, has been the subject of much attention recently. Here we present radial velocities for a sample of 77 globular clusters ass