ﻻ يوجد ملخص باللغة العربية
A recently discovered young, high-velocity giant star J01020100-7122208 is a good candidate of hypervelocity star ejected from the Galactic center, although it has a bound orbit. If we assume that this star was ejected from the Galactic center, it can be used to constrain the Galactic potential, because the deviation of its orbit from a purely radial orbit informs us of the torque that this star has received after its ejection. Based on this assumption, we estimate the flattening of the dark matter halo of the Milky Way by using the Gaia DR2 data and the circular velocity data from Eilers et al. (2019). Our Bayesian analysis shows that the orbit of J01020100-7122208 favors a prolate dark matter halo within $sim$ 10 kpc from the Galactic center. The posterior distribution of the density flattening $q$ shows a broad distribution at $q gtrsim1$ and peaks at $q simeq 1.5$. Also, 98.5% of the posterior distribution is located at $q>1$, highly disfavoring an oblate halo.
We estimate the 3D density profile of the Galactic dark matter (DM) halo within $r lesssim 30$ kpc from the Galactic centre by using the astrometric data for halo RR Lyrae stars from Gaia DR2. We model both the stellar halo distribution function and
Hypervelocity stars (HVSs) travel from the Galactic Centre across the dark matter halo of the Milky Way, where they are observed with velocities in excess of the Galactic escape speed. Because of their quasi-radial trajectories, they represent a uniq
The mass assembly history of the Milky Way can inform both theory of galaxy formation and the underlying cosmological model. Thus, observational constraints on the properties of both its baryonic and dark matter contents are sought. Here we show that
The cusp-core problem is one of the main challenges of the cold dark matter paradigm on small scales: the density of a dark matter halo is predicted to rise rapidly toward the center as rho ~ r^alpha with alpha between -1 and -1.5, while such a cuspy
We analyse systems analogous to the Milky Way (MW) in the EAGLE cosmological hydrodynamics simulation in order to deduce the likely structure of the MWs dark matter halo. We identify MW-mass haloes in the simulation whose satellite galaxies have simi