ترغب بنشر مسار تعليمي؟ اضغط هنا

AKARI Observations of Brown Dwarfs. IV. Effect of Elemental Abundances to Near-Infrared Spectra between 1.0 and 5.0 {mu}m

97   0   0.0 ( 0 )
 نشر من قبل Satoko Sorahana
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The detection of the CO_2 absorption band at 4.2 {mu}m in brown dwarf spectra by AKARI has made it possible to discuss CO_2 molecular abundance in brown dwarf atmospheres. In our previous studies, we found an excess in the 4.2 {mu}m CO_2 absorption band of three brown dwarf spectra, and suggested that these deviations were caused by high C and O elemental abundances in their atmospheres. To validate this hypothesis we construct a set of models of brown dwarf atmospheres with various elemental abundance patterns, and investigate the variations of the molecular composition, thermal structure and their effects to the near-infrared spectra between 1.0 and 5.0 {mu}m. The 4.2 {mu}m CO_2 absorption band in some late-L and T dwarfs taken by AKARI are stronger or weaker than predictions by corresponding models with solar abundance. By comparing CO_2 band in the model spectra to the observed near-infrared spectra, we confirm possible elemental abundance variations among brown dwarfs. We find that the band strength is especially sensitive to O abundance, but C is also needed to reproduce the entire near-infrared spectra. This result indicates that both C and O abundances should increase and decrease simultaneously for brown dwarfs. We find that a weaker CO_2 absorption band in a spectrum can also be explained by a model with lower C and O abundances.

قيم البحث

اقرأ أيضاً

M dwarfs are prominent targets of planet search projects, and their chemical composition is crucial to understanding the formation process or interior of orbiting exoplanets. However, measurements of elemental abundances of M dwarfs have been limited due to difficulties in the analysis of their optical spectra. We conducted a detailed chemical analysis of five M dwarfs (T_eff ~3200--3800 K), which form binary systems with G/K-type stars, by performing a line-by-line analysis based on high-resolution (R ~80,000) near-infrared (960--1710 nm) spectra obtained with CARMENES. We determined the chemical abundances of eight elements (Na, Mg, K, Ca, Ti, Cr, Mn, and Fe), which are in agreement with those of the primary stars within measurement errors (~0.2 dex). Through the analysis process, we investigated the unique behavior of atomic lines in a cool atmosphere. Most atomic lines are sensitive to changes in abundance not only of the corresponding elements but also of other elements, especially dominant electron donors such as Na and Ca. The Ti I lines show a negative correlation with the overall metallicity at T_eff < 3400 K due to the consumption of neutral titanium by the formation of TiO molecules. These findings indicate that to correctly estimate the overall metallicity or the abundance of any element, we need to determine the abundances of other individual elements consistently.
Near-infrared medium-resolution spectra of seven bright brown dwarfs are presented. The spectra were obtained with the Infrared Camera (IRC) on board the infrared astronomical satellite AKARI, covering 2.5--5.0 um with a spectral resolution of approx imately 120. The spectral types of the objects range from L5 to T8, and enable us to study the spectral evolution of brown dwarfs. The observed spectra are in general consistent with the predictions from the previous observations and photospheric models. We find that the CO fundamental band around 4.6 um is clearly seen even in the T8 dwarf 2MASS J041519-0935, confirming the presence of non-equilibrium chemical state in the atmosphere. We also identify the CO_2 fundamental stretching-mode band at 4.2 um for the first time in the spectra of late-L and T-type brown dwarfs. We analyze the observed spectra by comparing with the predicted ones based on the Unified Cloudy Model (UCM). Although overall spectral energy distributions (SEDs) can be reasonably fitted with the UCM, observed CO and CO_2 bands in late-L and T-dwarfs are unexpectedly stronger than the model predictions assuming local thermodynamical equilibrium (LTE). We examine the vertical mixing model and find that this model explains the CO band at least partly in the T-dwarfs 2MASS J041519-0935 and 2MASS J055919-1404. The CO fundamental band also shows excess absorption against the predicted one in the L9 dwarf SDSS J083008+4828. Since CO is already highly abundant in the upper photospheres of late-L dwarfs, the extra CO by vertical mixing has little effect on the CO band strengths, and the vertical mixing model cannot be applied to this L-dwarf. A more serious problem is that the significant enhancement of the CO_2 4.2 um band in both the late-L and T dwarfs cannot be explained at all by the vertical mixing model. The enhancement of the CO_2 band remains puzzling.
We present a library of near-infrared (1.1-2.45 microns) medium-resolution (R~1500-2000) integral field spectra of 15 young M6-L0 dwarfs, composed of companions with known ages and of isolated objects. We use it to (re)derive the NIR spectral types, luminosities and physical parameters of the targets, and to test (BT-SETTL, DRIFT-PHOENIX) atmospheric models. We derive infrared spectral types L0+-1, L0+-1, M9.5+-0.5, M9.5+-0.5, M9.25+-0.25, M8+0.5-0.75, and M8.5+-0.5 for AB Pic b, Cha J110913-773444, USco CTIO 108B, GSC 08047-00232 B, DH Tau B, CT Cha b, and HR7329B, respectively. BT-SETTL and DRIFT-PHOENIX models yield close Teff and log g estimates for each sources. The models seem to evidence a 600-300+600 K drop of the effective temperature at the M-L transition. Assuming the former temperatures are correct, we derive new mass estimates which confirm that DH Tau B, USco CTIO 108B, AB Pic b, KPNO Tau 4, OTS 44, and Cha1109 lay inside or at the boundary of the planetary mass range. We combine the empirical luminosities of the M9.5-L0 sources to the Teff to derive semi-empirical radii estimates that do not match hot-start evolutionary models predictions at 1-3 Myr. We use complementary data to demonstrate that atmospheric models are able to reproduce the combined optical and infrared spectral energy distribution, together with the near-infrared spectra of these sources simultaneously. But the models still fail to represent the dominant features in the optical. This issue casts doubts on the ability of these models to predict correct effective temperatures from near-infrared spectra alone. We advocate the use of photometric and spectroscopic data covering a broad range of wavelengths to study the properties of very low mass young companions to be detected with the planet imagers (Subaru/SCExAO, LBT/LMIRCam, Gemini/GPI, VLT/SPHERE).
91 - R. Nilsson 2017
The nearby Sun-like star GJ 758 hosts a cold substellar companion, GJ 758 B, at a projected separation of $lesssim$30 AU, previously detected in high-contrast multi-band photometric observations. In order to better constrain the companions physical c haracteristics, we acquired the first low-resolution ($R sim 50$) near-infrared spectrum of it using the high-contrast hyperspectral imaging instrument Project 1640 on Palomar Observatorys 5-m Hale telescope. We obtained simultaneous images in 32 wavelength channels covering the $Y$, $J$, and $H$ bands ($sim$952-1770 nm), and used data processing techniques based on principal component analysis to efficiently subtract chromatic background speckle-noise. GJ 758 B was detected in four epochs during 2013 and 2014. Basic astrometric measurements confirm its apparent northwest trajectory relative to the primary star, with no clear signs of orbital curvature. Spectra of SpeX/IRTF observed T dwarfs were compared to the combined spectrum of GJ 758 B, with ${chi}^2$ minimization suggesting a best fit for spectral type T7.0$pm$1.0, but with a shallow minimum over T5-T8. Fitting of synthetic spectra from the BT-Settl13 model atmospheres gives an effective temperature $T_{text{eff}}=741 pm 25$ K and surface gravity $log g = 4.3 pm 0.5$ dex (cgs). Our derived best-fit spectral type and effective temperature from modeling of the low-resolution spectrum suggest a slightly earlier and hotter companion than previous findings from photometric data, but do not rule out current results, and confirm GJ 758 B as one of the coolest sub-stellar companions to a Sun-like star to date.
Bayesian atmospheric retrieval tools can place constraints on the properties of brown dwarfs and hot Jupiters atmospheres. To fully exploit these methods, high signal-to-noise spectral libraries with well-understood uncertainties are essential. We pr esent a high signal-to-noise spectral library (1.10-1.69 microns) of the thermal emission of 76 brown dwarfs and hot Jupiters. All our spectra have been acquired with the Hubble Space Telescopes Wide Field Camera 3 instrument and its G141 grism. The near-infrared spectral types of these objects range from L4 to Y1. Eight of our targets have estimated masses below the deuterium-burning limit. We analyze the database to identify peculiar objects and/or multiple systems, concluding that this sample includes two very-low-surface-gravity objects and five intermediate-surface-gravity objects. In addition, spectral indices designed to search for composite atmosphere brown dwarfs, indicate that eight objects in our sample are strong candidates to have such atmospheres. None of these objects are overluminous, thus their composite atmospheres are unlikely a companion-induced artifact. Five of the eight confirmed candidates have been reported as photometrically variable, suggesting that composite atmospheric indices are useful in identifying brown dwarfs with strongly heterogeneous cloud covers. We compare hot Jupiters and brown dwarfs in a near-infrared color-magnitude diagram. We confirm that the coldest hot Jupiters in our sample have spectra similar to mid-L dwarfs, and the hottest hot Jupiters have spectra similar to those of M-dwarfs. Our sample provides a uniform dataset of a broad range of ultracool atmospheres, allowing large-scale, comparative studies, and providing a HST legacy spectral library.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا