ترغب بنشر مسار تعليمي؟ اضغط هنا

AKARI Observations of Brown Dwarfs I.: CO and CO_2 Bands in the Near-Infrared Spectra

293   0   0.0 ( 0 )
 نشر من قبل Issei Yamamura
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Near-infrared medium-resolution spectra of seven bright brown dwarfs are presented. The spectra were obtained with the Infrared Camera (IRC) on board the infrared astronomical satellite AKARI, covering 2.5--5.0 um with a spectral resolution of approximately 120. The spectral types of the objects range from L5 to T8, and enable us to study the spectral evolution of brown dwarfs. The observed spectra are in general consistent with the predictions from the previous observations and photospheric models. We find that the CO fundamental band around 4.6 um is clearly seen even in the T8 dwarf 2MASS J041519-0935, confirming the presence of non-equilibrium chemical state in the atmosphere. We also identify the CO_2 fundamental stretching-mode band at 4.2 um for the first time in the spectra of late-L and T-type brown dwarfs. We analyze the observed spectra by comparing with the predicted ones based on the Unified Cloudy Model (UCM). Although overall spectral energy distributions (SEDs) can be reasonably fitted with the UCM, observed CO and CO_2 bands in late-L and T-dwarfs are unexpectedly stronger than the model predictions assuming local thermodynamical equilibrium (LTE). We examine the vertical mixing model and find that this model explains the CO band at least partly in the T-dwarfs 2MASS J041519-0935 and 2MASS J055919-1404. The CO fundamental band also shows excess absorption against the predicted one in the L9 dwarf SDSS J083008+4828. Since CO is already highly abundant in the upper photospheres of late-L dwarfs, the extra CO by vertical mixing has little effect on the CO band strengths, and the vertical mixing model cannot be applied to this L-dwarf. A more serious problem is that the significant enhancement of the CO_2 4.2 um band in both the late-L and T dwarfs cannot be explained at all by the vertical mixing model. The enhancement of the CO_2 band remains puzzling.



قيم البحث

اقرأ أيضاً

The detection of the CO_2 absorption band at 4.2 {mu}m in brown dwarf spectra by AKARI has made it possible to discuss CO_2 molecular abundance in brown dwarf atmospheres. In our previous studies, we found an excess in the 4.2 {mu}m CO_2 absorption b and of three brown dwarf spectra, and suggested that these deviations were caused by high C and O elemental abundances in their atmospheres. To validate this hypothesis we construct a set of models of brown dwarf atmospheres with various elemental abundance patterns, and investigate the variations of the molecular composition, thermal structure and their effects to the near-infrared spectra between 1.0 and 5.0 {mu}m. The 4.2 {mu}m CO_2 absorption band in some late-L and T dwarfs taken by AKARI are stronger or weaker than predictions by corresponding models with solar abundance. By comparing CO_2 band in the model spectra to the observed near-infrared spectra, we confirm possible elemental abundance variations among brown dwarfs. We find that the band strength is especially sensitive to O abundance, but C is also needed to reproduce the entire near-infrared spectra. This result indicates that both C and O abundances should increase and decrease simultaneously for brown dwarfs. We find that a weaker CO_2 absorption band in a spectrum can also be explained by a model with lower C and O abundances.
222 - P. Dawson , A. Scholz , T.P. Ray 2014
Spectroscopic follow-up is a pre-requisite for studies of the formation and early evolution of brown dwarfs. Here we present IRTF/SpeX near-infrared spectroscopy of 30 candidate members of the young Upper Scorpius association, selected from our previ ous survey work. All 24 high confidence members are confirmed as young very low mass objects with spectral types from M5 to L1, 15-20 of them are likely brown dwarfs. This high yield confirms that brown dwarfs in Upper Scorpius can be identified from photometry and proper motions alone, with negligible contamination from field objects (<4%). Out of the 6 candidates with lower confidence, 5 might still be young very low mass members of Upper Scorpius, according to our spectroscopy. We demonstrate that some very low mass class II objects exhibit radically different near infrared (0.6 - 2.5micron) spectra from class III objects, with strong excess emission increasing towards longer wavelengths and partially filled in features at wavelengths shorter than 1.25micron. These characteristics can obscure the contribution of the photosphere within such spectra. Therefore, we caution that near infrared derived spectral types for objects with discs may be unreliable. Furthermore, we show that the same characteristics can be seen to some extent in all class II and even a significant fraction of class III objects (~40%), indicating that some of them are still surrounded by traces of dust and gas. Based on our spectra, we select a sample of objects with spectral types of M5 to L1, whose near-infrared emission represents the photosphere only. We recommend the use of these objects as spectroscopic templates for young brown dwarfs in the future.
158 - Y.Ita 2010
We carried out a near- to mid-infrared imaging and spectroscopic observations of the patchy areas in the Small Magellanic Cloud using the Infrared Camera on board AKARI. Two 100 arcmin2 areas were imaged in 3.2, 4.1, 7, 11, 15, and 24 um and also spe ctroscopically observed in the wavelength range continuously from 2.5 to 13.4 um. The spectral resolving power (lambda/Delta lambda) is about 20, 50, and 50 at 3.5, 6.6 and 10.6 um, respectively. Other than the two 100 arcmin2 areas, some patchy areas were imaged and/or spectroscopically observed as well. In this paper, we overview the observations and present a list of near- to mid-infrared photometric results, which lists ~ 12,000 near-infrared and ~ 1,800 mid-infrared bright point sources detected in the observed areas. The 10 sigma limits are 16.50, 16.12, 13.28, 11.26, 9.62, and 8.76 in Vega magnitudes at 3.2, 4.1, 7, 11, 15, and 24 um bands, respectively.
With a uniform VLT SINFONI data set of nine targets, we have developed an empirical grid of J,H,K spectra of the atmospheres of objects estimated to have very low substellar masses of sim5-20 MJup and young ages of sim1-50 Myr. Most of the targets ar e companions, objects which are especially valuable for comparison with atmosphere and evolutionary models, as they present rare cases in which the age is accurately known from the primary. Based on the sample youth, all objects are expected to have low surface gravity, and this study investigates the critical early phases of the evolution of substellar objects. The spectra are compared with grids of five different theoretical atmosphere models. This analysis represents the first systematic model comparison with infrared spectra of young brown dwarfs. The fits to the full JHK spectra of each object result in a range of best fit effective temperatures of +/-150-300K whether or not the full model grid or a subset restricted to lower log(g) values is used. This effective temperature range is significantly larger than the uncertainty typically assigned when using a single model grid. Fits to a single wavelength band can vary by up to 1000K using the different models. Since the overall shape of these spectra is governed more by the temperature than surface gravity, unconstrained model fits did not find matches with low surface gravity or a trend in log(g) with age. This suggests that empirical comparison with spectra of unambiguously young objects targets (such as these SINFONI data) may be the most reliable method to search for indications of low surface gravity and youth. For two targets, the SINFONI data are a second epoch and the data show no variations in morphology over time. The analysis of two other targets, AB Pic B and CT Cha B, suggests that these objects may have lower temperatures, and consequently lower masses, than previously estimated.
We present an analysis of deep HST/WFC3 near-IR (NIR) imaging data of the globular cluster M4. The best-photometry NIR colour-magnitude diagram (CMD) clearly shows the main sequence extending towards the expected end of the Hydrogen-burning limit and going beyond this point towards fainter sources. The white dwarf sequence can be identified. As such, this is the deepest NIR CMD of a globular cluster to date. Archival HST optical data were used for proper-motion cleaning of the CMD and for distinguishing the white dwarfs (WDs) from brown dwarf (BD) candidates. Detection limits in the NIR are around F110W approx 26.5 mag and F160W approx27 mag, and in the optical around F775W approx 28 mag. Comparing our observed CMDs with theoretical models, we conclude that we have reached beyond the H-burning limit in our NIR CMD and are probably just above or around this limit in our optical-NIR CMDs. Thus, any faint NIR sources that have no optical counterpart are potential BD candidates, since the optical data are not deep enough to detect them. We visually inspected the positions of NIR sources which are fainter than the H-burning limit in F110W and for which the optical photometry did not return a counterpart. We found in total five sources for which we did not get an optical measurement. For four of these five sources, a faint optical counterpart could be visually identified, and an upper optical magnitude was estimated. Based on these upper optical magnitude limits, we conclude that one source is likely a WD, one source could either be a WD or BD candidate, and the remaining two sources agree with being BD candidates. For only one source no optical counterpart could be detected, which makes this source a good BD candidate. We conclude that we found in total four good BD candidates.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا