ترغب بنشر مسار تعليمي؟ اضغط هنا

Projected Constraints on Scalarization with Gravitational Waves from Neutron Star Binaries

78   0   0.0 ( 0 )
 نشر من قبل Laura Sampson
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Certain scalar-tensor theories have the property of endowing stars with scalar hair, sourced either by the stars own compactness (spontaneous scalarization) or, for binary systems, by the companions scalar hair (induced scalarization) or by the orbital binding energy (dynamical scalarization). Scalarized stars in binaries present different conservative dynamics than in General Relativity, and can also excite a scalar mode in the metric perturbation that carries away dipolar radiation. As a result, the binary orbit shrinks faster than predicted in General Relativity, modifying the rate of decay of the orbital period. In spite of this, scalar-tensor theories can pass existing binary pulsar tests, because observed pulsars may not be compact enough or sufficiently orbitally bound to activate scalarization. Gravitational waves emitted during the last stages of compact binary inspirals are thus ideal probes of scalarization effects. For the standard projected sensitivity of advanced LIGO, we here show that, if neutron stars are sufficiently compact to enter the detectors sensitivity band already scalarized, then gravitational waves could place constraints at least comparable to binary pulsars. If the stars dynamically scalarize while inspiraling in band, then constraints are still possible provided the scalarization occurs sufficiently early in the inspiral, roughly below an orbital frequency of 50Hz. In performing these studies, we derive an easy-to-calculate data analysis measure, an integrated phase difference between a General Relativistic and a modified signal, that maps directly to the Bayes factor so as to determine whether a modified gravity effect is detectable. Finally, we find that custom-made templates are equally effective as model-independent, parameterized post-Einsteinian waveforms at detecting such modified gravity effects at realistic signal-to-noise ratios.

قيم البحث

اقرأ أيضاً

128 - Wynn C. G. Ho 2020
During their most recent observing run, LIGO/Virgo reported the gravitational wave (GW) transient S191110af, a burst signal at a frequency of 1.78 kHz that lasted for 0.104 s. While this signal was later deemed non-astrophysical, genuine detections o f uncertain origin will occur in the future. Here we study the potential for detecting GWs from neutron star fluid oscillations, which have mode frequency and duration matching those of S191110af and which can be used to constrain the equation of state of nuclear matter. Assuming that such transient oscillations can be excited to energies typical of a pulsar glitch, we use measured properties of known glitching pulsars to estimate the amplitude of GWs produced by such events. We find that current GW detectors may observe nearby pulsars undergoing large events with energy similar to Vela pulsar glitch energies, while next generation detectors could observe a significant number of events. Finally, we show that it is possible to distinguish between GWs produced by rapidly rotating and slowly rotating pulsars from the imprint of rotation on the f-mode frequency.
Gravitational waves from binary neutron star (BNS) and black hole/neutron star (BHNS) inspirals are primary sources for detection by the Advanced Laser Interferometer Gravitational-Wave Observatory. The tidal forces acting on the neutron stars induce changes in the phase evolution of the gravitational waveform, and these changes can be used to constrain the nuclear equation of state. Current methods of generating BNS and BHNS waveforms rely on either computationally challenging full 3D hydrodynamical simulations or approximate analytic solutions. We introduce a new method for computing inspiral waveforms for BNS/BHNS systems by adding the post-Newtonian (PN) tidal effects to full numerical simulations of binary black holes (BBHs), effectively replacing the nontidal terms in the PN expansion with BBH results. Comparing a waveform generated with this method against a full hydrodynamical simulation of a BNS inspiral yields a phase difference of $<1$ radian over $sim 15$ orbits. The numerical phase accuracy required of BNS simulations to measure the accuracy of the method we present here is estimated as a function of the tidal deformability parameter ${lambda}$.
We present a search for periodic gravitational waves from the neutron star in the supernova remnant Cassiopeia A. The search coherently analyzes data in a 12-day interval taken from the fifth science run of the Laser Interferometer Gravitational-Wave Observatory. It searches gravitational wave frequencies from 100 to 300 Hz, and covers a wide range of first and second frequency derivatives appropriate for the age of the remnant and for different spin-down mechanisms. No gravitational wave signal was detected. Within the range of search frequencies, we set 95% confidence upper limits of 0.7--1.2e-24 on the intrinsic gravitational wave strain, 0.4--4e-4 on the equatorial ellipticity of the neutron star, and 0.005--0.14 on the amplitude of r-mode oscillations of the neutron star. These direct upper limits beat indirect limits derived from energy conservation and enter the range of theoretical predictions involving crystalline exotic matter or runaway r-modes. This is the first gravitational wave search to present upper limits on r-modes.
In this work we analyze the gravitational wave signal from hypermassive neutron stars formed after the merger of binary neutron star systems, focusing on its spectral features. The gravitational wave signals are extracted from numerical relativity si mulations of models already considered by De Pietri et al. [Phys. Rev. D 93, 064047 (2016)], Maione et al. [Classical Quantum Gravity 33, 175009 (2016)], and Feo et al. [Classical Quantum Gravity 34, 034001 (2017)], and allow us to study the effect of the total baryonic mass of such systems (from $2.4 M_{odot}$ to $3 M_{odot}$), the mass ratio (up to $q = 0.77$), and the neutron star equation of state, both in equal and highly unequal mass binaries. We use the peaks we find in the gravitational spectrum as an independent test of already published hypotheses of their physical origin and empirical relations linking them with the characteristics of the merging neutron stars. In particular, we highlight the effects of the mass ratio, which in the past was often neglected. We also analyze the temporal evolution of the emission frequencies. Finally, we introduce a modern variant of Pronys method to analyze the gravitational wave postmerger emission as a sum of complex exponentials, trying to overcome some drawbacks of both Fourier spectra and least-squares fitting. Overall, the spectral properties of the postmerger signal observed in our simulation are in agreement with those proposed by other groups. More specifically, we find that the analysis of Bauswein and Stergioulas [Phys. Rev. D 91, 124056 (2015)] is particularly effective for binaries with very low masses or with a small mass ratio and that the mechanical toy model of Takami et al. [Phys. Rev. D 91, 064001 (2015)] provides a comprehensive and accurate description of the early stages of the postmerger.
Gravitational waves emitted by neutron star black hole mergers encode key properties of neutron stars - such as their size, maximum mass and spins - and black holes. However, the presence of matter and the high mass ratio makes generating long and ac curate waveforms from these systems hard to do with numerical relativity, and not much is known about systematic uncertainties due to waveform modeling. We simulate gravitational waves from neutron star black hole mergers by hybridizing numerical relativity waveforms produced with the SpEC code with a recent numerical relativity surrogate NRHybSur3dq8Tidal. These signals are analyzed using a range of available waveform families, and statistical and systematic errors are reported. We find that at a network signal-to-noise ratio (SNR) of 30, statistical uncertainties are usually larger than systematic offsets, while at an SNR of 70 the two become comparable. The individual black hole and neutron star masses, as well as the mass ratios, are typically measured very precisely, though not always accurately at high SNR. At a SNR of 30 the neutron star tidal deformability can only be bound from above, while for louder sources it can be measured and constrained away from zero. All neutron stars in our simulations are non-spinning, but in no case we can constrain the neutron star spin to be smaller than $sim0.4$ (90% credible interval). Waveform families whose late inspiral has been tuned specifically for neutron star black hole signals typically yield the most accurate characterization of the source parameters. Their measurements are in tension with those obtained using waveform families tuned against binary neutron stars, even for mass ratios that could be relevant for both binary neutron stars and neutron star black holes mergers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا