ترغب بنشر مسار تعليمي؟ اضغط هنا

Gravitational waveforms for neutron star binaries from binary black hole simulations

101   0   0.0 ( 0 )
 نشر من قبل Kevin Barkett
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Gravitational waves from binary neutron star (BNS) and black hole/neutron star (BHNS) inspirals are primary sources for detection by the Advanced Laser Interferometer Gravitational-Wave Observatory. The tidal forces acting on the neutron stars induce changes in the phase evolution of the gravitational waveform, and these changes can be used to constrain the nuclear equation of state. Current methods of generating BNS and BHNS waveforms rely on either computationally challenging full 3D hydrodynamical simulations or approximate analytic solutions. We introduce a new method for computing inspiral waveforms for BNS/BHNS systems by adding the post-Newtonian (PN) tidal effects to full numerical simulations of binary black holes (BBHs), effectively replacing the nontidal terms in the PN expansion with BBH results. Comparing a waveform generated with this method against a full hydrodynamical simulation of a BNS inspiral yields a phase difference of $<1$ radian over $sim 15$ orbits. The numerical phase accuracy required of BNS simulations to measure the accuracy of the method we present here is estimated as a function of the tidal deformability parameter ${lambda}$.



قيم البحث

اقرأ أيضاً

176 - Edward K. Porter 2004
The standard post-Newtonian approximation to gravitational waveforms, called T-approximants, from non-spinning black hole binaries are known not to be sufficiently accurate close to the last stable orbit of the system. A new approximation, called P-a pproximants, is believed to improve the accuracy of the waveforms rendering them applicable up to the last stable orbit. In this study we apply P-approximants to the case of a test-particle in equatorial orbit around a Kerr black hole parameterized by a spin parameter q that takes values between -1 and 1. In order to assess the performance of the two approximants we measure their effectualness (i.e. larger overlaps with the exact signal), and faithfulness (i.e. smaller biases while measuring the parameters of the signal) with the exact (numerical) waveforms. We find that in the case of prograde orbits, that is orbits whose angular momentum is in the same sense as the spin angular momentum of the black hole, T-approximant templates obtain an effectualness of ~ 0.99 for spins q < 0.75. For 0.75 < q < 0.95, the effectualness drops to about 0.82. The P-approximants achieve effectualness of > 0.99 for all spins up to q = 0.95. The bias in the estimation of parameters is much lower in the case of P-approximants than T-approximants. We find that P-approximants are both effectual and faithful and should be more effective than T-approximants as a detection template family when q>0. For q<0 both T- and P-approximants perform equally well so that either of them could be used as a detection template family.
Gravitational radiation is properly defined only at future null infinity ($scri$), but in practice it is estimated from data calculated at a finite radius. We have used characteristic extraction to calculate gravitational radiation at $scri$ for the inspiral and merger of two equal mass non-spinning black holes. Thus we have determined the first unambiguous merger waveforms for this problem. The implementation is general purpose, and can be applied to calculate the gravitational radiation, at $scri$, given data at a finite radius calculated in another computation.
We construct closed-form gravitational waveforms (GWs) with tidal effects for the coalescence and merger of binary neutron stars. The method relies on a new set of eccentricity-reduced and high-resolution numerical relativity (NR) simulations and is composed of three steps. First, tidal contributions to the GW phase are extracted from the time-domain NR data. Second, those contributions are employed to fix high-order coefficients in an effective and resummed post-Newtonian expression. Third, frequency-domain tidal approximants are built using the stationary phase approximation. Our tidal approximants are valid from the low frequencies to the strong-field regime and up to merger. They can be analytically added to any binary black hole GW model to obtain a binary neutron star waveform, either in the time or in the frequency domain. This work provides simple, flexible, and accurate models ready to be used in both searches and parameter estimation of binary neutron star events.
243 - P. Ajith , S. Babak , Y. Chen 2009
Gravitational waveforms from the inspiral and ring-down stages of the binary black hole coalescences can be modelled accurately by approximation/perturbation techniques in general relativity. Recent progress in numerical relativity has enabled us to model also the non-perturbative merger phase of the binary black-hole coalescence problem. This enables us to emph{coherently} search for all three stages of the coalescence of non-spinning binary black holes using a single template bank. Taking our motivation from these results, we propose a family of template waveforms which can model the inspiral, merger, and ring-down stages of the coalescence of non-spinning binary black holes that follow quasi-circular inspiral. This two-dimensional template family is explicitly parametrized by the physical parameters of the binary. We show that the template family is not only emph{effectual} in detecting the signals from black hole coalescences, but also emph{faithful} in estimating the parameters of the binary. We compare the sensitivity of a search (in the context of different ground-based interferometers) using all three stages of the black hole coalescence with other template-based searches which look for individual stages separately. We find that the proposed search is significantly more sensitive than other template-based searches for a substantial mass-range, potentially bringing about remarkable improvement in the event-rate of ground-based interferometers. As part of this work, we also prescribe a general procedure to construct interpolated template banks using non-spinning black hole waveforms produced by numerical relativity.
The Numerical INJection Analysis (NINJA) project is a collaborative effort between members of the numerical relativity and gravitational-wave astrophysics communities. The purpose of NINJA is to study the ability to detect gravitational waves emitted from merging binary black holes and recover their parameters with next-generation gravitational-wave observatories. We report here on the results of the second NINJA project, NINJA-2, which employs 60 complete binary black hole hybrid waveforms consisting of a numerical portion modelling the late inspiral, merger, and ringdown stitched to a post-Newtonian portion modelling the early inspiral. In a blind injection challenge similar to that conducted in recent LIGO and Virgo science runs, we added 7 hybrid waveforms to two months of data recolored to predictions of Advanced LIGO and Advanced Virgo sensitivity curves during their first observing runs. The resulting data was analyzed by gravitational-wave detection algorithms and 6 of the waveforms were recovered with false alarm rates smaller than 1 in a thousand years. Parameter estimation algorithms were run on each of these waveforms to explore the ability to constrain the masses, component angular momenta and sky position of these waveforms. We also perform a large-scale monte-carlo study to assess the ability to recover each of the 60 hybrid waveforms with early Advanced LIGO and Advanced Virgo sensitivity curves. Our results predict that early Advanced LIGO and Advanced Virgo will have a volume-weighted average sensitive distance of 300Mpc (1Gpc) for $10M_{odot}+10M_{odot}$ ($50M_{odot}+50M_{odot}$) binary black hole coalescences. We demonstrate that neglecting the component angular momenta in the waveform models used in matched-filtering will result in a reduction in sensitivity for systems with large component angular momenta. [Abstract abridged for ArXiv, full version in PDF]
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا