ترغب بنشر مسار تعليمي؟ اضغط هنا

The Properties of Lyman Alpha Nebulae: Gas Kinematics from Non-resonant Lines

115   0   0.0 ( 0 )
 نشر من قبل Yujin Yang
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

[Abridged] With VLT/X-shooter, we obtain optical and NIR spectra of six Ly-alpha blobs at z~2.3. Using three measures --- the velocity offset between the Lya line and the non-resonant [OIII] or H-alpha line (Dv_Lya), the offset of stacked interstellar metal absorption lines, and the spectrally-resolved [OIII] line profile --- we study the kinematics of gas along the line of sight to galaxies within each blob center. These three indicators generally agree in velocity and direction, and are consistent with a simple picture in which the gas is stationary or slowly outflowing at a few hundred km/s from the embedded galaxies. The absence of stronger outflows is not a projection effect: the covering fraction for our sample is limited to <1/8 (13%). The outflow velocities exclude models in which star formation or AGN produce super or hyper winds of up to ~1000km/s. The Dv_Lya offsets here are smaller than typical of LBGs, but similar to those of compact LAEs. The latter suggests that outflow speed cannot be a dominant factor in driving extended Lya emission. For one Lya blob (CDFS-LAB14), whose Lya profile and metal absorption line offsets suggest no significant bulk motion, we use a simple radiative transfer model to make the first column density measurement of gas in an embedded galaxy, finding it consistent with a DLA system. Overall, the absence of clear inflow signatures suggests that the channeling of gravitational cooling radiation into Lya is not significant over the radii probed here. However, one peculiar system (CDFS-LAB10) has a blueshifted Lya component that is not obviously associated with any galaxy, suggesting either displaced gas arising from tidal interactions among blob galaxies or gas flowing into the blob center. The former is expected in these overdense regions, and the latter might signify the predicted but elusive cold gas accretion along filaments.



قيم البحث

اقرأ أيضاً

142 - Yujin Yang 2011
Exploring the origin of Ly-alpha nebulae (blobs) requires measurements of their gas kinematics that are impossible with only the resonant, optically-thick LyA line. To define gas motions relative to the systemic velocity of the blob, the LyA line mus t be compared with an optically-thin line like Halpha, which is not much altered by radiative transfer effects. We obtain optical and NIR spectra of the two brightest LyA blobs from Yang et al. sample using the Magellan/MagE and VLT/SINFONI. Both the LyA and Halpha lines confirm that these blobs lie at the survey redshift, z~2.3. Within each blob, we detect several Halpha sources, which roughly correspond to galaxies seen in HST images. The Halpha detections show that these galaxies have large internal velocity dispersions (130 - 190km/s) and that, in the one system (LAB01), their velocity difference is ~440 km/s. The presence of multiple galaxies within the blobs, and those galaxies large velocity dispersions and large relative motion, is consistent with our previous finding that LyA blobs inhabit massive dark matter halos that will evolve into those typical of rich clusters today. To determine whether the gas near the embedded galaxies is predominantly infalling or outflowing, we compare the LyA and Halpha line centers, finding that LyA is not offset (Delta LyA = +0km/s) in LAB01 and redshifted by only +230 km/s in LAB02. These offsets are small compared to those of Lyman break galaxies, which average +450 km/s and extend to about +700 km/s. We test and rule out the simplest infall models and those outflow models with super/hyper-winds, which require large outflow velocities. Because of the unknown geometry of the gas distribution and the possibility of multiple sources of LyA emission embedded in the blobs, a larger sample and more sophisticated models are required to test more complex or a wider range of infall and outflow scenarios.
A new but rare sample of spatially extended emission line nebulae, nicknamed Green Beans, was discovered at z~0.3 thanks to strong [OIII] emission, and subsequently shown to be local cousins of the Lyman-alpha (Lya) nebulae found at high redshift. He re we use follow-up APO/DIS spectroscopy to better understand how these low redshift Lya nebulae compare to other populations of strong emission line sources. Our spectroscopic data show that low-z Lya nebulae have AGN-like emission line ratios, relatively narrow line widths (FWHM<1000 km s^{-1}), and emission line kinematics resembling those of Type 2 AGN at the same redshift, confirming that they are powered by Type 2 AGN with typical ionizing continua. While low-z Lya nebulae are larger and less concentrated than compact, star-forming Green Pea galaxies, we find that they resemble typical Type 2 AGN in terms of r-band concentration and size. Based on this pilot study, low-z Lya nebulae appear to be a subset of Type 2 AGN with bluer optical continua and high [OIII] equivalent widths but with comparable sizes and similar [OIII] kinematics. These characteristics may simply reflect the fact that low-z Lya nebulae are drawn from the high luminosity end of the Type 2 AGN distribution, with higher nuclear activity driving higher [OIII] equivalent widths and more central star formation leading to bluer optical continua. Deeper spectroscopic follow-up of the full sample will shed further light on these issues and on the relationship between these low-z Lya nebulae and the Lya nebula population at high redshift.
The processes allowing the escape of ionizing photons from galaxies into the intergalactic medium are poorly known. To understand how Lyman continuum (LyC) photons escape galaxies, we constrain the HI covering fractions and column densities using ult raviolet HI and metal absorption lines of 18 star-forming galaxies which have Lyman series observations. Nine of these galaxies are confirmed LyC emitters. We fit the stellar continuum, dust attenuation, metal, and HI properties to consistently determine the UV attenuation, as well as the column densities and covering factors of neutral hydrogen and metals. We use synthetic interstellar absorption lines to explore the systematics of our measurements. Then we apply our method to the observed UV spectra of low-redshift and z-2 galaxies. The observed HI lines are found to be saturated in all galaxies. An indirect approach using OI column densities and the observed O/H abundances yields HI column densities of 18.6 to 20 cm-2. These columns are too high to allow the escape of ionizing photons. We find that the known LyC leakers have HI covering fractions less than unity. Ionizing photons escape through optically thin holes/channels in a clumpy interstellar medium. Our simulations confirm that the HI covering fractions are accurately recovered. The SiII and HI covering fractions scale linearly, in agreement with observations from stacked Lyman break galaxy spectra at z-3. Thus, with an empirical correction, the SiII absorption lines can also be used to determine the HI coverage. Finally, we show that a consistent fitting of dust attenuation, continuum and absorption lines is required to properly infer the covering fraction of neutral gas and subsequently to infer the escape fraction of ionizing radiation. These measurements can estimate the LyC escape fraction, as we demonstrate in a companion paper.
We provide an analytical description of the line broadening of HI absorbers in the Lyman-alpha forest resulting from Doppler broadening and Jeans smoothing. We demonstrate that our relation captures the dependence of the line-width on column density for narrow lines in z~3 mock spectra remarkably well. Broad lines at a given column density arise when the underlying density structure is more complex, and such clustering is not captured by our model. Our understanding of the line broadening opens the way to a new method to characterise the thermal state of the intergalactic medium and to determine the sizes of the absorbing structures.
We have recently reported the discovery of five low redshift Lyman continuum (LyC) emitters (LCEs, hereafter) with absolute escape fractions fesc(LyC) ranging from 6 to 13%, higher than previously found, and which more than doubles the number of low redshift LCEs.We use these observations to test theoretical predictions about a link between the characteristics of the Lyman-alpha (Lya) line from galaxies and the escape of ionising photons. We analyse the Lya spectra of eight LCEs of the local Universe observed with the Cosmic Origins Spectrograph onboard the Hubble Space Telescope (our five leakers and three galaxies from the litterature), and compare their strengths and shapes to the theoretical criteria and comparison samples of local galaxies: the Lyman Alpha Reference Survey, Lyman Break Analogs, Green Peas, and the high-redshift strong LyC leaker Ion2. Our LCEs are found to be strong Lya emitters, with high equivalent widths, EW(Lya)> 70 {AA}, and large Lya escape fractions, fesc(Lya) > 20%. The Lya profiles are all double-peaked with a small peak separation, in agreement with our theoretical expectations. They also have no underlying absorption at the Lya position. All these characteristics are very different from the Lya properties of typical star-forming galaxies of the local Universe. A subset of the comparison samples (2-3 Green Pea galaxies) share these extreme values, indicating that they could also be leaking. We also find a strong correlation between the star formation rate surface density and the escape fraction of ionising photons, indicating that the compactness of star-forming regions plays a role in shaping low column density paths in the interstellar medium of LCEs. The Lya properties of LCEs are peculiar: Lya can be used as a reliable tracer of LyC escape from galaxies, in complement to other indirect diagnostics proposed in the literature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا