ﻻ يوجد ملخص باللغة العربية
Exploring the origin of Ly-alpha nebulae (blobs) requires measurements of their gas kinematics that are impossible with only the resonant, optically-thick LyA line. To define gas motions relative to the systemic velocity of the blob, the LyA line must be compared with an optically-thin line like Halpha, which is not much altered by radiative transfer effects. We obtain optical and NIR spectra of the two brightest LyA blobs from Yang et al. sample using the Magellan/MagE and VLT/SINFONI. Both the LyA and Halpha lines confirm that these blobs lie at the survey redshift, z~2.3. Within each blob, we detect several Halpha sources, which roughly correspond to galaxies seen in HST images. The Halpha detections show that these galaxies have large internal velocity dispersions (130 - 190km/s) and that, in the one system (LAB01), their velocity difference is ~440 km/s. The presence of multiple galaxies within the blobs, and those galaxies large velocity dispersions and large relative motion, is consistent with our previous finding that LyA blobs inhabit massive dark matter halos that will evolve into those typical of rich clusters today. To determine whether the gas near the embedded galaxies is predominantly infalling or outflowing, we compare the LyA and Halpha line centers, finding that LyA is not offset (Delta LyA = +0km/s) in LAB01 and redshifted by only +230 km/s in LAB02. These offsets are small compared to those of Lyman break galaxies, which average +450 km/s and extend to about +700 km/s. We test and rule out the simplest infall models and those outflow models with super/hyper-winds, which require large outflow velocities. Because of the unknown geometry of the gas distribution and the possibility of multiple sources of LyA emission embedded in the blobs, a larger sample and more sophisticated models are required to test more complex or a wider range of infall and outflow scenarios.
[Abridged] With VLT/X-shooter, we obtain optical and NIR spectra of six Ly-alpha blobs at z~2.3. Using three measures --- the velocity offset between the Lya line and the non-resonant [OIII] or H-alpha line (Dv_Lya), the offset of stacked interstella
We present spectroscopic measurements of the [OIII] emission line from two subregions of strong Lyman-alpha emission in a radio-quiet Lyman-alpha blob (LAB). The blob under study is LAB1 (Steidel et al. 2000) at z ~ 3.1, and the [OIII] detections are
We present a study of an extended Lyman-alpha (Lya) nebula located in a known overdensity at z~2.38. The data include multiwavelength photometry covering the rest-frame spectral range from 0.1 to 250um, and deep optical spectra of the sources associa
The kinematics of damped Lyman alpha absorbers (DLAs) are difficult to reproduce in hierarchical galaxy formation models, particularly the preponderance of wide systems. We investigate DLA kinematics at z=3 using high-resolution cosmological hydrodyn
We present results for 19 Lyman Break Analogs (LBAs) observed with Keck/OSIRIS with an AO-assisted spatial resolution of less than 200 pc. We detect satellites/companions, diffuse emission and velocity shear, all with high signal-to-noise ratios. The