ترغب بنشر مسار تعليمي؟ اضغط هنا

Petawatt laser absorption bounded

40   0   0.0 ( 0 )
 نشر من قبل Matthew Levy
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The interaction of petawatt ($10^{15} mathrm{W}$) lasers with solid matter forms the basis for advanced scientific applications such as table-top particle accelerators, ultrafast imaging systems and laser fusion. Key metrics for these applications relate to absorption, yet conditions in this regime are so nonlinear that it is often impossible to know the fraction of absorbed light $f$, and even the range of $f$ is unknown. Here using a relativistic Rankine-Hugoniot-like analysis, we show for the first time that $f$ exhibits a theoretical maximum and minimum. These bounds constrain nonlinear absorption mechanisms across the petawatt regime, forbidding high absorption values at low laser power and low absorption values at high laser power. For applications needing to circumvent the absorption bounds, these results will accelerate a shift from solid targets, towards structured and multilayer targets, and lead the development of new materials.

قيم البحث

اقرأ أيضاً

59 - A. Hannasch , L. Lisi , J. Brooks 2021
We reconstruct spectra of secondary x-rays generated from a 500 MeV - 2 GeV laser plasma electron accelerator. A compact (7.5 $times$ 7.5 $times$ 15 cm), modular x-ray calorimeter made of alternating layers of absorbing materials and imaging plates r ecords the single-shot x-ray depth-energy distribution. X-rays range from few-MeV inverse Compton scattered x-rays to $sim$100 MeV average bremsstrahlung energies and are characterized individually by the same calorimeter detector. Geant4 simulations of energy deposition from mono-energetic x-rays in the stack generate an energy-vs-depth response matrix for the given stack configuration. A fast, iterative reconstruction algorithm based on analytic models of inverse Compton scattering and bremsstrahlung photon energy distributions then unfolds x-ray spectra in $sim10$ seconds.
The processes of energy gain and redistribution in a dense gas subject to an intense ultrashort laser pulse are investigated theoretically for the case of high-pressure argon. The electrons released via strong-field ionization and driven by oscillati ng laser field collide with neutral neighbor atoms, thus effecting the energy gain in the emerging electron gas via a short-range inverse Bremsstrahlung interaction. These collisions also cause excitation and impact ionization of the atoms thus reducing the electron-gas energy. A kinetic model of these competing processes is developed which predicts the prevalence of excited atoms over ionized atoms by the end of the laser pulse. The creation of a significant number of excited atoms during the pulse in high-pressure gases is consistent with the delayed ionization dynamics in the pulse wake, recently discovered by Gao et al.[1] This energy redistribution mechanism offers an approach to manage effectively the excitation vs. ionization patterns in dense gases interacting with intense laser pulses and thus opens new avenues for diagnostics and control in these settings.
By means of a quantitative shadowgraphic method, we performed a space-time characterization of the refractive index variation and transient absorption induced by a light-plasma filament generated by a 100 fs laser pulse in water. The formation and ev olution of the plasma channel in the proximity of the nonlinear focus were observed with a 23 fs time resolution.
71 - Y. T. Li , C. Li , M. L. Zhou 2011
We report a plasma-based strong THz source generated by using intense femtosecond laser pulses to irradiate solid targets at relativistic intensity >10^18W/cm2. Energies up to 50 microJ/sr per THz pulse is observed in the specular direction when the laser pulses are incident onto a copper foil at 67.5 degree. The source appears to be linearly polarized. The temporal, spectral properties of the THz are measured by a single shot, electro-optic sampling method with a chirped laser pulse. The THz radiation is attributed to the self-organized transient fast electron currents formed along the target surface. Such a strong THz source allows potential applications in THz nonlinear physics.
Laser-induced breakdown spectroscopy (LIBS) is a laser based diagnostics used to study atomic emission from the expanding plasma plume formed during the laser-matter interaction. It provides valuable information about the composition of the target ma terial. LIBS has proved its potential application in the analysis of impurities, pollutants and toxic elements in various types of matrices of different samples (solid, liquid and gases), even those present under difficult and harsh environmental conditions. This article reviews some recent developments in the field, and its wide application in various fields of research and analysis.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا