ﻻ يوجد ملخص باللغة العربية
The processes of energy gain and redistribution in a dense gas subject to an intense ultrashort laser pulse are investigated theoretically for the case of high-pressure argon. The electrons released via strong-field ionization and driven by oscillating laser field collide with neutral neighbor atoms, thus effecting the energy gain in the emerging electron gas via a short-range inverse Bremsstrahlung interaction. These collisions also cause excitation and impact ionization of the atoms thus reducing the electron-gas energy. A kinetic model of these competing processes is developed which predicts the prevalence of excited atoms over ionized atoms by the end of the laser pulse. The creation of a significant number of excited atoms during the pulse in high-pressure gases is consistent with the delayed ionization dynamics in the pulse wake, recently discovered by Gao et al.[1] This energy redistribution mechanism offers an approach to manage effectively the excitation vs. ionization patterns in dense gases interacting with intense laser pulses and thus opens new avenues for diagnostics and control in these settings.
In magnetoplasmonics, it is possible to tailor the magneto-optical properties of nanostructures by exciting surface plasmon polaritons (SPPs). Thus far, magnetoplasmonic effects have been considered static. Here, we describe ultrafast manifestations
We present experimental measurements of the femtosecond time-scale generation of strong magnetic-field fluctuations during the interaction of ultrashort, moderately relativistic laser pulses with solid targets. These fields were probed using low-emit
While filaments are generally interpreted as a dynamic balance between Kerr focusing and plasma defocusing, the role of the higher-order Kerr effect (HOKE) is actively debated as a potentially dominant defocusing contribution to filament stabilizatio
We disclose an unanticipated link between plasmonics and nonlinear frequency down-conversion in laser-induced gas-plasmas. For two-color femtosecond pump pulses, a plasmonic resonance is shown to broaden the terahertz emission spectra significantly.
In [I.R. Khairulin et al., submitted to Phys. Rev. Lett.] we propose a method for amplifying a train of sub-femtosecond pulses of circularly or elliptically polarized extreme ultraviolet (XUV) radiation, constituted by high-order harmonics of an infr