ترغب بنشر مسار تعليمي؟ اضغط هنا

Flavored leptogenesis with quasi degenerate neutrinos in a broken cyclic symmetric model

52   0   0.0 ( 0 )
 نشر من قبل Mainak Chakraborty
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Cyclic symmetry in the neutrino sector with the type-I seesaw mechanism in the mass basis of charged leptons and right chiral neutrinos ($N_{iR}$, $i=e,mu,tau$) generates two fold degenerate light neutrino and three fold degenerate heavy neutrino mass spectrum. Consequently, such scheme, produces vanishing one light neutrino mass squared difference and lepton asymmetry. To circumvent such unphysical outcome, we break cyclic symmetry in the diagonal right chiral neutrino mass term by a small breaking parameter. Nonzero mass squared differences and mixing angles are generated with the help of the small breaking parameter. Smallness of the breaking parameter opens up a possibility of resonant leptogenesis. Assuming complex Yukawa couplings, we derive generalized expressions flavor dependent CP asymmetry parameters ($varepsilon^alpha_i$) which are valid for quasi degenerate as well as hierarchical mass spectrum of right handed neutrinos. There after we set up the chain of coupled Boltzmann equations (which are flavor dependent too) which have to be solved in order to get the final lepton asymmetries. Depending upon the temperature regime the CP asymmetries and the Boltzmann equations may also be flavor independent. As our goal is to study the enhancement of CP asymmetry due to quasi degeneracy of right handed neutrinos, we select only the lowest allowed (by neutrino oscillation data) value of breaking parameter (and other corresponding Lagrangian parameters) and estimate the baryon asymmetry parameter $Y_B$. Experimental constraint of $Y_B$ introduces a bound on right handed neutrino mass which remained unrestricted by neutrino oscillation data.


قيم البحث

اقرأ أيضاً

In light of the improved sensitivities of cosmological observations, we examine the status of quasi-degenerate neutrino mass scenarios. Within the simplest extension of the standard cosmological model with massive neutrinos, we find that quasi-degene rate neutrinos are severely constrained by present cosmological data and neutrino oscillation experiments. % % We find that Planck 2018 observations of cosmic microwave background (CMB) anisotropies disfavour quasi-degenerate neutrino masses at $2.4$ Gaussian $sigma$s, while adding Baryon acoustic oscillations (BAO) data brings the rejection to 5.9$sigma$s. % The highest statistical significance with which one would be able to rule out quasi-degeneracy would arise if the sum of neutrino masses is $Sigma m_ u = 60$ meV (the minimum allowed by neutrino oscillation experiments); % indeed a sensitivity of 15 meV, as expected from a combination of future cosmological probes, would further improve the rejection level up to 17$sigma$. % We discuss the robustness of these projections with respect to assumptions on the underlying cosmological model, and also compare them with bounds from $beta$ decay endpoint and neutrinoless double beta decay studies.
We consider how, for quasi-degenerate neutrinos with tri-bi-maximal mixing at a high-energy scale, the mixing angles are affected by radiative running from high to low-energy scales in a supersymmetric theory. The limits on the high-energy scale that follow from consistency with the observed mixing are determined. We construct a model in which a non-Abelian discrete family symmetry leads both to a quasi-degenerate neutrino mass spectrum and to near tri-bi-maximal mixing.
We have studied the scotogenic model proposed by Ernest Ma, which is an extension of the Standard Model by three singlet right-handed neutrinos and a scalar doublet. This model proposes that the light neutrinos acquire a non-zero mass at 1-loop level . In this work, the realisation of the scotogenic model is done by using discrete symmetries $A_{4}times Z_{4}$ in which the non-zero $theta_{13}$ is produced by assuming a non-degeneracy in the loop factor. Considering different lepton flavor violating(LFV) processes such as $l_{alpha}longrightarrow l_{beta}gamma$ and $l_{alpha}longrightarrow 3l_{beta}$, their impact on neutrino phenomenology is studied. We have also analysed $0 ubetabeta$ and baryon asymmetry of the Universe (BAU) in this work.
For leptogenesis with heavy sterile neutrinos above the electroweak scale, asymmetries produced at early times (in the relativistic regime) are relevant, if they are protected from washout. This can occur for weak washout or when the asymmetry is par tly protected by being transferred to spectator fields. We thus study the relevance of relativistic effects for leptogenesis in a minimal seesaw model with two sterile neutrinos in the strongly hierarchical limit. Starting from first principles, we derive a set of momentum-averaged fluid equations to calculate the final $B-L$ asymmetry as a function of the washout strength and for different initial conditions at order one accuracy. For this, we take the leading fluid approximation for the relativistic $CP$-even and odd rates. Assuming that spectator fields remain in chemical equilibrium, we find that for weak washout, relativistic corrections lead to a sign flip and an enhancement of the asymmetry for a vanishing initial abundance of sterile neutrinos. As an example for the effect of partially equilibrated spectators, we consider bottom-Yukawa and weak-sphaleron interactions in leptogenesis driven by sterile neutrinos with masses $gtrsim 5times10^{12}$ GeV. For a vanishing initial abundance of sterile neutrinos, this can give rise to another flip and an absolute enhancement of the final asymmetry in the strong washout regime by up to two orders of magnitude relative to the cases either without spectators or with fully equilibrated ones. These effects are less pronounced for thermal initial conditions for the sterile neutrinos. The $CP$-violating source in the relativistic regime at early times is important as it is proportional to the product of lepton-number violating and lepton-number conserving rates, and therefore less suppressed than an extrapolation of the nonrelativistic approximations may suggest.
In this work, we study the lepton-number-violating processes of $K^pm$ and $D^pm$ mesons. Two quasi-degenerate sterile neutrinos are assumed to induce such processes. Different with the case where only one sterile neutrino involves, here, the CP phas es of the mixing parameters could give sizable contribution. This, in turn, would affect the absolute values of the mixing parameters determined by the experimental upper limits of the branching fractions. A general function which express the difference of the mixing parameters for two-generation and one-generation is presented. Special cases with specific relations of the parameters are discussed. Besides, we also thoroughly investigate the CP violation effect of such processes. It is shown that generally $mathcal A_{CP}$ is a function of the sterile neutrino mass.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا