ﻻ يوجد ملخص باللغة العربية
We consider the influence of breakup channels on the complete fusion of weakly bound cluster-type systems in terms of dynamic polarization potentials. It is argued that the enhancement of the cross section at sub-barrier energies may be consistent with recent experimental observations that nucleon transfer, often leading to breakup, is dominant compared to direct breakup. The main trends of the experimental complete fusion cross sections are analyzed in the framework of the Dynamic Polarization Potential approach. The qualitative conclusions are supported by CDCC calculations including a sequential breakup channel, the one neutron stripping of $^7$Li followed by the breakup of $^6$Li.
The classical dynamical model for reactions induced by weakly-bound nuclei at near-barrier energies is developed further. It allows a quantitative study of the role and importance of incomplete fusion dynamics in asymptotic observables, such as the p
We consider the influence of breakup channels on the complete fusion of weakly bound systems in terms of dynamic polarization potentials. It is argued that the enhancement of the cross section at sub-barrier energies may be consistent with recent exp
Complete fusion excitation functions of reactions involving breakup are studied by using the empirical coupled-channel (ECC) model with breakup effects considered. An exponential function with two parameters is adopted to describe the prompt-breakup
The influence on the fusion process of coupling transfer/breakup channels is investigated for the medium weight $^{6,7}$Li+$^{59}$Co systems in the vicinity of the Coulomb barrier. Coupling effects are discussed within a comparison of predictions of
We have performed CDCC calculations for collisions of $^{7}$Li projectiles on $^{59}$Co, $^{144}$Sm and $^{208}$Pb targets at near-barrier energies, to assess the importance of the Coulomb and the nuclear couplings in the breakup of $^{7}$Li, as well