ﻻ يوجد ملخص باللغة العربية
We report tight-binding (TB) and Density Function Theory (DFT) calculations of magnetocrystalline anisotropy energy (MAE) of free Fe (body centerd cubic) and Co (face centered cubic) slabs and nanocrystals. The nanocrystals are truncated square pyramids which can be obtained experimentally by deposition of metal on a SrTiO$_3$(001) substrate. For both elements our local analysis shows that the total MAE of the nanocrystals is largely dominated by the contribution of (001) facets. However, while the easy axis of Fe(001) is out-of-plane, it is in-plane for Co(001). This has direct consequences on the magnetic reversal mechanism of the nanocrystals. Indeed, the very high uniaxial anisotropy of Fe nanocrystals makes them a much better potential candidate for magnetic storage devices.
Phase-separated semiconductors containing magnetic nanostructures are relevant systems for the realization of high-density recording media. Here, the controlled strain engineering of Ga$delta$FeN layers with Fe$_y$N embedded nanocrystals (NCs) textit
Using first-principles calculations, we elucidate microscopic mechanisms of perpendicular magnetic anisotropy (PMA)in Fe/MgO magnetic tunnel junctions through evaluation of orbital and layer resolved contributions into the total anisotropy value. It
We investigated electronic structure and magnetic anisotropy in the Fe/MgO interface of magnetic metal and dielectric insulator under the Cr layer of small electronegativity, by means of the first-principles density functional approach. The result in
Tilted off-plane magnetic anisotropy induces two unusual characteristic magnetotransport phenomena: extraordinary Hall effect in the presence of an in-plane magnetic field, and non-monotonic anisotropic magnetoresistance in the presence of a field no
Solid solution BiFe1-xCoxO3 shows anti-ferromagnetic order and pyroelectric order, simultaneously. It has been known that BiFe1-xCoxO3 exhibits a structural phase transition between monoclinic and tetragonal phases as x increases. This kinds of trans