ترغب بنشر مسار تعليمي؟ اضغط هنا

Abstractions, Algorithms and Data Structures for Structural Bioinformatics in PyCogent

231   0   0.0 ( 0 )
 نشر من قبل Cameron Mura
 تاريخ النشر 2014
والبحث باللغة English




اسأل ChatGPT حول البحث

To facilitate flexible and efficient structural bioinformatics analyses, new functionality for three-dimensional structure processing and analysis has been introduced into PyCogent -- a popular feature-rich framework for sequence-based bioinformatics, but one which has lacked equally powerful tools for handling stuctural/coordinate-based data. Extensible Python modules have been developed, which provide object-oriented abstractions (based on a hierarchical representation of macromolecules), efficient data structures (e.g. kD-trees), fast implementations of common algorithms (e.g. surface-area calculations), read/write support for Protein Data Bank-related file formats and wrappers for external command-line applications (e.g. Stride). Integration of this code into PyCogent is symbiotic, allowing sequence-based work to benefit from structure-derived data and, reciprocally, enabling structural studies to leverage PyCogents versatile tools for phylogenetic and evolutionary analyses.



قيم البحث

اقرأ أيضاً

Normal mode analysis offers an efficient way of modeling the conformational flexibility of protein structures. Simple models defined by contact topology, known as elastic network models, have been used to model a variety of systems, but the validatio n is typically limited to individual modes for a single protein. We use anisotropic displacement parameters from crystallography to test the quality of prediction of both the magnitude and directionality of conformational variance. Normal modes from four simple elastic network model potentials and from the CHARMM forcefield are calculated for a data set of 83 diverse, ultrahigh resolution crystal structures. While all five potentials provide good predictions of the magnitude of flexibility, the methods that consider all atoms have a clear edge at prediction of directionality, and the CHARMM potential produces the best agreement. The low-frequency modes from different potentials are similar, but those computed from the CHARMM potential show the greatest difference from the elastic network models. This was illustrated by computing the dynamic correlation matrices from different potentials for a PDZ domain structure. Comparison of normal mode results with anisotropic temperature factors opens the possibility of using ultrahigh resolution crystallographic data as a quantitative measure of molecular flexibility. The comprehensive evaluation demonstrates the costs and benefits of using normal mode potentials of varying complexity. Comparison of the dynamic correlation matrices suggests that a combination of topological and chemical potentials may help identify residues in which chemical forces make large contributions to intramolecular coupling.
SciPy is an open source scientific computing library for the Python programming language. SciPy 1.0 was released in late 2017, about 16 years after the original version 0.1 release. SciPy has become a de facto standard for leveraging scientific algor ithms in the Python programming language, with more than 600 unique code contributors, thousands of dependent packages, over 100,000 dependent repositories, and millions of downloads per year. This includes usage of SciPy in almost half of all machine learning projects on GitHub, and usage by high profile projects including LIGO gravitational wave analysis and creation of the first-ever image of a black hole (M87). The library includes functionality spanning clustering, Fourier transforms, integration, interpolation, file I/O, linear algebra, image processing, orthogonal distance regression, minimization algorithms, signal processing, sparse matrix handling, computational geometry, and statistics. In this work, we provide an overview of the capabilities and development practices of the SciPy library and highlight some recent technical developments.
Our work is concerned with the generation and targeted design of RNA, a type of genetic macromolecule that can adopt complex structures which influence their cellular activities and functions. The design of large scale and complex biological structur es spurs dedicated graph-based deep generative modeling techniques, which represents a key but underappreciated aspect of computational drug discovery. In this work, we investigate the principles behind representing and generating different RNA structural modalities, and propose a flexible framework to jointly embed and generate these molecular structures along with their sequence in a meaningful latent space. Equipped with a deep understanding of RNA molecular structures, our most sophisticated encoding and decoding methods operate on the molecular graph as well as the junction tree hierarchy, integrating strong inductive bias about RNA structural regularity and folding mechanism such that high structural validity, stability and diversity of generated RNAs are achieved. Also, we seek to adequately organize the latent space of RNA molecular embeddings with regard to the interaction with proteins, and targeted optimization is used to navigate in this latent space to search for desired novel RNA molecules.
148 - A. Dubey , S. Brandt , R. Brower 2013
Large, complex, multi-scale, multi-physics simulation codes, running on high performance com-puting (HPC) platforms, have become essential to advancing science and engineering. These codes simulate multi-scale, multi-physics phenomena with unpreceden ted fidelity on petascale platforms, and are used by large communities. Continued ability of these codes to run on future platforms is as crucial to their communities as continued improvements in instruments and facilities are to experimental scientists. However, the ability of code developers to do these things faces a serious challenge with the paradigm shift underway in platform architecture. The complexity and uncertainty of the future platforms makes it essential to approach this challenge cooperatively as a community. We need to develop common abstractions, frameworks, programming models and software development methodologies that can be applied across a broad range of complex simulation codes, and common software infrastructure to support them. In this position paper we express and discuss our belief that such an infrastructure is critical to the deployment of existing and new large, multi-scale, multi-physics codes on future HPC platforms.
The performance (accuracy and robustness) of several clustering algorithms is studied for linearly dependent random variables in the presence of noise. It turns out that the error percentage quickly increases when the number of observations is less t han the number of variables. This situation is common situation in experiments with DNA microarrays. Moreover, an {it a posteriori} criterion to choose between two discordant clustering algorithm is presented.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا