ﻻ يوجد ملخص باللغة العربية
Normal mode analysis offers an efficient way of modeling the conformational flexibility of protein structures. Simple models defined by contact topology, known as elastic network models, have been used to model a variety of systems, but the validation is typically limited to individual modes for a single protein. We use anisotropic displacement parameters from crystallography to test the quality of prediction of both the magnitude and directionality of conformational variance. Normal modes from four simple elastic network model potentials and from the CHARMM forcefield are calculated for a data set of 83 diverse, ultrahigh resolution crystal structures. While all five potentials provide good predictions of the magnitude of flexibility, the methods that consider all atoms have a clear edge at prediction of directionality, and the CHARMM potential produces the best agreement. The low-frequency modes from different potentials are similar, but those computed from the CHARMM potential show the greatest difference from the elastic network models. This was illustrated by computing the dynamic correlation matrices from different potentials for a PDZ domain structure. Comparison of normal mode results with anisotropic temperature factors opens the possibility of using ultrahigh resolution crystallographic data as a quantitative measure of molecular flexibility. The comprehensive evaluation demonstrates the costs and benefits of using normal mode potentials of varying complexity. Comparison of the dynamic correlation matrices suggests that a combination of topological and chemical potentials may help identify residues in which chemical forces make large contributions to intramolecular coupling.
The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a major worldwide public health emergency that has infected over $1.5$ million people. The partially open state of S1 subunit in spike glycoprotein is considered vital for its
Although the importance of protein dynamics in protein function is generally recognized, the role of protein fluctuations in allosteric effects scarcely has been considered. To address this gap, the Kullback-Leibler divergence (Dx) between protein co
The flexibility in gap cost enjoyed by Hidden Markov Models (HMMs) is expected to afford them better retrieval accuracy than position-specific scoring matrices (PSSMs). We attempt to quantify the effect of more general gap parameters by separately ex
We consider multi-chain protein native structures and propose a criterion that determines whether two chains in the system are entangled or not. The criterion is based on the behavior observed by pulling at both temini of each chain simultaneously in
Proteins perform critical processes in all living systems: converting solar energy into chemical energy, replicating DNA, as the basis of highly performant materials, sensing and much more. While an incredible range of functionality has been sampled