ﻻ يوجد ملخص باللغة العربية
In [B1, Theorem 2.36] we proved the equivalence of six conditions on a continuous function f on an interval. These conditions define a subset of the set of operator convex functions, whose elements are called strongly operator convex. Two of the six conditions involve operator-algebraic semicontinuity theory, as given by C. Akemann and G. Pedersen in [AP], and the other four conditions do not involve operator algebras at all. Two of these conditions are operator inequalities, one is a global condition on f, and the fourth is an integral representation of f stronger than the usual integral representation for operator convex functions. The purpose of this paper is to make the equivalence of these four conditions accessible to people who do not know operator algebra theory as well as to operator algebraists who do not know the semicontinuity theory. We also provide a similar treatment of one theorem from [B1] concerning (usual) operator convex functions. And in two final sections we give a somewhat tentative treatment of some other operator inequalities for strongly operator convex functions, and we give a differential criterion for strong operator convexity.
This paper concerns three classes of real-valued functions on intervals, operator monotone functions, operator convex functions, and strongly operator convex functions. Strongly operator convex functions were previously treated in [3] and [4], where
Recently the behavior of operator monotone functions on unbounded intervals with respect to the relation of strictly positivity has been investigated. In this paper we deeply study such behavior not only for operator monotone functions but also for o
We present some general theorems about operator algebras that are algebras of functions on sets, including theories of local algebras, residually finite dimensional operator algebras and algebras that can be represented as the scalar multipliers of a
In this paper, we introduce the concept of operator geometrically convex functions for positive linear operators and prove some Hermite-Hadamard type inequalities for these functions. As applications, we obtain trace inequalities for operators which give some refinements of previous results.
In this paper, we introduce the concept of operator arithmetic-geometrically convex functions for positive linear operators and prove some Hermite-Hadamard type inequalities for these functions. As applications, we obtain trace inequalities for opera