ﻻ يوجد ملخص باللغة العربية
We numerically study the interplay between superconductivity and disorder on the graphene honeycomb lattice with on-site Hubbard attractive interactions U using a spatially inhomogeneous self-consistent Bogoliubov-de Gennes (BdG) approach. In the absence of disorder there are two phases at charge neutrality. Below a critical value Uc for attractive interactions there is a Dirac semimetal phase and above it there is a superconducting phase. We add scalar potential disorder to the system, while remaining at charge neutrality on average. Numerical solution of the BdG equations suggests that while in the strong attraction regime (U > Uc) disorder has the usual effect of suppressing superconductivity, in the weak attraction regime (U < Uc) weak disorder enhances superconductivity. In the weak attraction regime, disorder that is too strong eventually suppresses superconductivity, i.e., there is an optimal disorder strength that maximizes the critical temperature Tc. Our numerical results also suggest that in the weakly disordered regime, mesoscopic inhomogeneities enhance superconductivity significantly more than what is predicted by a spatially uniform mean-field theory a` la Abrikosov-Gorkov. In this regime, superconductivity consists of rare phase-coherent superconducting islands. We also study the enhancement of the superconducting proximity effect by disorder and mesoscopic inhomogeneities, and obtain typical spatial plots of the tunneling density of states and the superfluid susceptibility that can be directly compared to scanning tunneling miscroscopy (STM) experiments on proximity-induced superconductivity in graphene.
Suppression of the critical temperature in homogeneously disordered superconducting films is a consequence of the disorder-induced enhancement of Coulomb repulsion. We demonstrate that for the majority of thin films studied now this effect cannot be
In this communication, we numerically studied disordered quantum transport in a quantum anomalous Hall insulator-superconductor junction based on the effective edge model approach. In particular, we focus on the parameter regime with the free mean pa
Comment on BCS superconductivity of Dirac fermions in graphene layers by N. B. Kopnin and E. B. Sonin [arXiv:0803.3772; Phys. Rev. Lett. 100, 246808 (2008)].
The optics of correlated disordered media is a fascinating research topic emerging at the interface between the physics of waves in complex media and nanophotonics. Inspired by photonic structures in nature and enabled by advances in nanofabrication
Two dimensional topological superconductors (TS) host chiral Majorana modes (MMs) localized at the boundaries. In this work, within quasiclassical approximation we study the effect of disorder on the localization length of MMs in two dimensional spin