ﻻ يوجد ملخص باللغة العربية
We propose a new and realistic 3-3-1 model with the minimal lepton and scalar contents, named the simple 3-3-1 model. The scalar sector contains two new heavy Higgs bosons, one neutral H and another singly-charged H^pm, besides the standard model Higgs boson. There is a mixing between the Z boson and the new neutral gauge boson (Z). The rho parameter constrains the 3-3-1 breaking scale (w) to be w>460 GeV. The quarks get consistent masses via five-dimensional effective interactions while the leptons via interactions up to six dimensions. Particularly, the neutrino small masses are generated as a consequence of the approximate lepton-number symmetry of the model. The proton is stabilized due to the lepton-parity conservation (-1)^L. The hadronic FCNCs are calculated that give a bound w>3.6 TeV and yield that the third quark generation is different from the first two. The correct mass generation for top quark implies that the minimal scalar sector as proposed is unique. By the simple 3-3-1 model, the other scalars beside the minimal ones can behave as inert fields responsible for dark matter. A triplet, doublet and singlet dark matter are respectively recognized. Our proposals provide the solutions for the long-standing dark matter issue in the minimal 3-3-1 model.
We present the features of the fully flipped 3-3-1-1 model and show that this model leads to dark matter candidates naturally. We study two dark matter scenarios corresponding to the triplet fermion and singlet scalar candidates, and we determine the
In this work, we interpret the 3-3-1-1 model when the B-L and 3-3-1 breaking scales behave simultaneously as the inflation scale. This setup not only realizes the previously-achieved consequences of inflation and leptogenesis, but also provides new i
The flipped 3-3-1 model discriminates lepton families instead of the quark ones in normal sense, where the left-handed leptons are in two triplets plus one sextet while the left-handed quarks are in antitriplets, under $SU(3)_L$. We investigate a min
We prove that the $SU(3)_Cotimes SU(2)_L otimes SU(3)_Rotimes U(1)_X$ (3-2-3-1) gauge model always contains a matter parity $W_P=(-1)^{3(B-L)+2s}$ as conserved residual gauge symmetry, where $B-L=2(beta T_{8R}+X)$ is a $SU(3)_Rotimes U(1)_X$ charge.
The simple 3-3-1 model that contains the minimal lepton and minimal scalar contents is detailedly studied. The impact of the inert scalars (i.e., the extra fundamental fields that provide realistic dark matter candidates) on the model is discussed. A