ﻻ يوجد ملخص باللغة العربية
The notion of entropy is ubiquitous both in natural and social sciences. In the last two decades, a considerable effort has been devoted to the study of new entropic forms, which generalize the standard Boltzmann-Gibbs (BG) entropy and are widely applicable in thermodynamics, quantum mechanics and information theory. In [23], by extending previous ideas of Shannon [38], [39], Khinchin proposed an axiomatic definition of the BG entropy, based on four requirements, nowadays known as the Shannon-Khinchin (SK) axioms. The purpose of this paper is twofold. First, we show that there exists an intrinsic group-theoretical structure behind the notion of entropy. It comes from the requirement of composability of an entropy with respect to the union of two statistically independent subsystems, that we propose in an axiomatic formulation. Second, we show that there exists a simple universal class of admissible entropies. This class contains many well known examples of entropies and infinitely many new ones, a priori multi-parametric. Due to its specific relation with the universal formal group, the new family of entropies introduced in this work will be called the universal-group entropy. A new example of multi-parametric entropy is explicitly constructed.
The basic thermodynamic quantities for a non-interacting scalar field in a periodic potential composed of either a one-dimensional chain of Dirac $delta$-$delta^prime$ functions or a specific potential with extended compact support are calculated. Fi
The entanglement entropy (EE) can measure the entanglement between a spatial subregion and its complement, which provides key information about quantum states. Here, rather than focusing on specific regions, we study how the entanglement entropy chan
The rotation group is formulated based on the abstract $B(X)$-module framework. Although the infinitesimal generators of rotation group include differential operators, the rotation group is formulated utilizing the framework of bounded operator algeb
We construct new families of spin chain Hamiltonians that are local, integrable and translationally invariant. To do so, we make use of the Clifford group that arises in quantum information theory. We consider translation invariant Clifford group tra
In this work, we study generalized entropies and information geometry in a group-theoretical framework. We explore the conditions that ensure the existence of some natural properties and at the same time of a group-theoretical structure for a large c