ﻻ يوجد ملخص باللغة العربية
We present results from an end-to-end simulation pipeline interferometric observations of cosmic microwave background polarization. We use both maximum-likelihood and Gibbs sampling techniques to estimate the power spectrum. In addition, we use Gibbs sampling for image reconstruction from interferometric visibilities. The results indicate the level to which various systematic errors (e.g., pointing errors, gain errors, beam shape errors, cross- polarization) must be controlled in order to successfully detect and characterize primordial B modes as well as other scientific goals. In addition, we show that Gibbs sampling is an effective method of image reconstruction for interferometric data in other astrophysical contexts.
We investigate the impact of instrumental systematic errors in interferometric measurements of the cosmic microwave background (CMB) temperature and polarization power spectra. We simulate interferometric CMB observations to generate mock visibilitie
We propose an algorithm for the reconstruction of the signal induced by cosmic strings in the cosmic microwave background (CMB), from radio-interferometric data at arcminute resolution. Radio interferometry provides incomplete and noisy Fourier measu
Using only cosmic microwave background polarization data from the POLARBEAR experiment, we measure $B$-mode polarization delensing on subdegree scales at more than $5sigma$ significance. We achieve a 14% $B$-mode power variance reduction, the highest
We analyze the effect of polarized diffuse emission in the calibration of wide-beam mm-wave polarimeters, when using the Crab Nebula as a reference source for both polarized brightness and polarization angle. We show that, for CMB polarization experi
Scalar wavelets have been used extensively in the analysis of Cosmic Microwave Background (CMB) temperature maps. Spin needlets are a new form of (spin) wavelets which were introduced in the mathematical literature by Geller and Marinucci (2008) as a