ﻻ يوجد ملخص باللغة العربية
We theoretically study the photoelectron angular distributions (PADs) from two-color two-photon near-threshold ionization of hydrogen and noble gas (He, Ne, and Ar) atoms by a combined action of femtosecond extreme ultraviolet (EUV) and near-infrared (IR) laser pulses. Using the second-order time-dependent perturbation theory, we clarify how the two-photon ionization process depends on EUV-IR pulse delay and how it is connected to the interplay between resonant and nonresonant ionization paths. Furthermore, by solving the time-dependent Schrodinger equation, we calculate the anisotropy parameters $beta_2$ and $beta_4$ as well as the amplitude ratio and relative phase between partial waves characterizing the PADs. We show that in general these parameters notably depend on the time delay between the EUV and IR pulses, except for He. This dependence is related to the varying relative role of resonant and nonresonant paths of photoionization. Our numerical results for H, He, Ne, and Ar show that the pulse-delay effect is more pronounced for $p$-shell ionization than for $s$-shell ionization.
We analyze the photoelectron angular distribution in two-pathway interference between non-resonant one-photon and resonant two-photon ionization of neon. We consider a bichromatic femtosecond XUV pulse whose fundamental frequency is tuned near the $2
Multiphoton ionization provides a clear window into the nature of electron correlations in the helium atom. In the present study, the final state energy range extends up to the region near the $N=2$ and $N=3$ ionization thresholds, where two-photon i
Phase-shift differences and amplitude ratios of the outgoing $s$ and $d$ continuum wave packets generated by two-photon ionization of helium atoms are determined from the photoelectron angular distributions obtained using velocity map imaging. Helium
We study the double ionization of atoms subjected to circularly polarized (CP) laser pulses. We analyze two fundamental ionization processes: the sequential (SDI) and non-sequential (NSDI) double ionization in the light of the rotating frame (RF) whi
The combination of photoelectron spectroscopy and ultrafast light sources is on track to set new standards for detailed interrogation of dynamics and reactivity of molecules. A crucial prerequisite for further progress is the ability to not only dete