ترغب بنشر مسار تعليمي؟ اضغط هنا

Learning Valuation Distributions from Partial Observation

292   0   0.0 ( 0 )
 نشر من قبل Jamie Morgenstern
 تاريخ النشر 2014
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Auction theory traditionally assumes that bidders valuation distributions are known to the auctioneer, such as in the celebrated, revenue-optimal Myerson auction. However, this theory does not describe how the auctioneer comes to possess this information. Recently, Cole and Roughgarden [2014] showed that an approximation based on a finite sample of independent draws from each bidders distribution is sufficient to produce a near-optimal auction. In this work, we consider the problem of learning bidders valuation distributions from much weaker forms of observations. Specifically, we consider a setting where there is a repeated, sealed-bid auction with $n$ bidders, but all we observe for each round is who won, but not how much they bid or paid. We can also participate (i.e., submit a bid) ourselves, and observe when we win. From this information, our goal is to (approximately) recover the inherently recoverable part of the underlying bid distributions. We also consider extensions where different subsets of bidders participate in each round, and where bidders valuations have a common-value component added to their independent private values.

قيم البحث

اقرأ أيضاً

We prove two determinacy and decidability results about two-players stochastic reachability games with partial observation on both sides and finitely many states, signals and actions.
129 - Anastasis Kratsios 2019
This paper introduces an intermediary between conditional expectation and conditional sublinear expectation, called R-conditioning. The R-conditioning of a random-vector in $L^2$ is defined as the best $L^2$-estimate, given a $sigma$-subalgebra and a degree of model uncertainty. When the random vector represents the payoff of derivative security in a complete financial market, its R-conditioning with respect to the risk-neutral measure is interpreted as its risk-averse value. The optimization problem defining the optimization R-conditioning is shown to be well-posed. We show that the R-conditioning operators can be used to approximate a large class of sublinear expectations to arbitrary precision. We then introduce a novel numerical algorithm for computing the R-conditioning. This algorithm is shown to be strongly convergent. Implementations are used to compare the risk-averse value of a Vanilla option to its traditional risk-neutral value, within the Black-Scholes-Merton framework. Concrete connections to robust finance, sensitivity analysis, and high-dimensional estimation are all treated in this paper.
In this paper, we examine the Nash equilibrium convergence properties of no-regret learning in general N-player games. For concreteness, we focus on the archetypal follow the regularized leader (FTRL) family of algorithms, and we consider the full sp ectrum of uncertainty that the players may encounter - from noisy, oracle-based feedback, to bandit, payoff-based information. In this general context, we establish a comprehensive equivalence between the stability of a Nash equilibrium and its support: a Nash equilibrium is stable and attracting with arbitrarily high probability if and only if it is strict (i.e., each equilibrium strategy has a unique best response). This equivalence extends existing continuous-ti
Alternating-time temporal logic with strategy contexts (ATLsc) is a powerful formalism for expressing properties of multi-agent systems: it extends CTL with strategy quantifiers, offering a convenient way of expressing both collaboration and antagoni sm between several agents. Incomplete observation of the state space is a desirable feature in such a framework, but it quickly leads to undecidable verification problems. In this paper, we prove that uniform incomplete observation (where all players have the same observation) preserves decidability of the model-checking problem, even for very expressive logics such as ATLsc.
We consider an example of stochastic games with partial, asymmetric and non-classical information. We obtain relevant equilibrium policies using a new approach which allows managing the belief updates in a structured manner. Agents have access only t o partial information updates, and our approach is to consider optimal open loop control until the information update. The agents continuously control the rates of their Poisson search clocks to acquire the locks, the agent to get all the locks before others would get reward one. However, the agents have no information about the acquisition status of others and will incur a cost proportional to their rate process. We solved the problem for the case with two agents and two locks and conjectured the results for $N$-agents. We showed that a pair of (partial) state-dependent time-threshold policies form a Nash equilibrium.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا