ترغب بنشر مسار تعليمي؟ اضغط هنا

A new method for computing self-gravity in an isolated system

50   0   0.0 ( 0 )
 نشر من قبل James Chan
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A new approximation method for inverting the Poissons equation is presented for a continuously distributed and finite-sized source in an unbound domain. The advantage of this image multipole method arises from its ability to place the computational error close to the computational domain boundary, making the source region almost error free. It is contrasted to the modified Greens function method that has small but finite errors in the source region. Moreover, this approximation method also has a systematic way to greatly reduce the errors at the expense of somewhat greater computational efforts. Numerical examples of three-dimensional and two-dimensional cases are given to illustrate the advantage of the new method.

قيم البحث

اقرأ أيضاً

Internal gravity waves have been observed in the Earths atmosphere and oceans, on Mars and Jupiter, and in the Suns atmosphere. Despite ample evidence for the existence of propagating gravity waves in the Suns atmosphere, we still do not have a full understanding of their characteristics and overall role for the dynamics and energetics of the solar atmosphere. Here we present a new approach to study the propagation of gravity waves in the solar atmosphere. It is based on calculating the three-dimensional cross-correlation function between the vertical velocities measured at different heights. We apply this new method to a time series of co-spatial and co-temporal Doppler images obtained by SOHO/MDI and Hinode/SOT as well as to simulations of upward propagating gravity wave packets. We show some preliminary results and outline future developments.
203 - Hui Dong , Da-wei Wang , M.B. Kim 2017
Irreversible processes are frequently adopted to account for the entropy increase in classical thermodynamics. However, the corresponding physical origins are not always clear, e.g. in a free expansion process, a typical model in textbooks. In this l etter, we study the entropy change during free expansion for a particle with the thermal de Broglie wavelength ($lambda_{T}$) in a one-dimensional square trap with size $L$. By solely including quantum dephasing as an irreversible process, we recover classical result of entropy increase in the classical region ($Lgglambda_{T}$), while predict prominent discrepancies in the quantum region ($Llllambda_{T}$) because of non-equilibrium feature of trapped atoms after expansion. It is interesting to notice that the dephasing, though absent in classical system, is critical to clarify mysteries in classical thermodynamics.
42 - Jian-hua He 2015
We propose a new method to model cluster scaling relations in modified gravity. Using a suite of non-radiative hydrodynamical simulations, we show that the scaling relations of cumulative gas quantities, such as the Sunyaev Zeldovich effect (Compton- y parameter) and the x-ray Compton-Y parameter, can be accurately predicted using the known results in the $Lambda$CDM model with a precision of $sim3%$. This method provides a reliable way to analyze the gas physics in modified gravity using the less-demanding and much more efficient pure cold dark matter simulations. Our results therefore have important theoretical and practical implications in constraining gravity using cluster surveys.
We have pioneered a new method for the measurement of extragalactic distances. This method uses the time-lag between variations in the short wavelength and long wavelength light from an active galactic nucleus (AGN), based on a quantitative physical model of dust reverberation that relates the time-lag to the absolute luminosity of the AGN. We use the large homogeneous data set from intensive monitoring observations in optical and near-infrared wavelength bands with the dedicated 2-m MAGNUM telescope to obtain the distances to 17 AGNs in the redshift range z=0.0024 to z=0.0353. These distance measurements are compared with distances measured using Cepheid variable stars, and are used to infer that H_0= 73 +- 3 (random) km/s/Mpc. The systematic error in H_0 is examined, and the uncertainty in the size distribution of dust grains is the largest source of the systematic error, which is much reduced for a sample of AGNs for which their parameter values in the model of dust reverberation are individually measured. This AGN time-lag method can be used beyond 30 Mpc, the farthest distance reached by extragalactic Cepheids, and can be extended to high-redshift quasi-stellar objects.
129 - M. Maturi , C. Mignone 2009
We define an optimal basis system into which cosmological observables can be decomposed. The basis system can be optimised for a specific cosmological model or for an ensemble of models, even if based on drastically different physical assumptions. Th e projection coefficients derived from this basis system, the so-called features, provide a common parameterisation for studying and comparing different cosmological models independently of their physical construction. They can be used to directly compare different cosmologies and study their degeneracies in terms of a simple metric separation. This is a very convenient approach, since only very few realisations have to be computed, in contrast to Markov-Chain Monte Carlo methods. Finally, the proposed basis system can be applied to reconstruct the Hubble expansion rate from supernova luminosity distance data with the advantage of being sensitive to possible unexpected features in the data set. We test the method both on mock catalogues and on the SuperNova Legacy Survey data set.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا