ترغب بنشر مسار تعليمي؟ اضغط هنا

Inverse Expander Mixing for Hypergraphs

53   0   0.0 ( 0 )
 نشر من قبل Emma Cohen
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We formulate and prove inverse mixing lemmas in the settings of simplicial complexes and k-uniform hypergraphs. In the hypergraph setting, we extend results of Bilu and Linial for graphs. In the simplicial complex setting, our results answer a question of Parzanchevski et al.


قيم البحث

اقرأ أيضاً

We design an algorithm for computing connectivity in hypergraphs which runs in time $hat O_r(p + min{lambda^{frac{r-3}{r-1}} n^2, n^r/lambda^{r/(r-1)}})$ (the $hat O_r(cdot)$ hides the terms subpolynomial in the main parameter and terms that depend o nly on $r$) where $p$ is the size, $n$ is the number of vertices, and $r$ is the rank of the hypergraph. Our algorithm is faster than existing algorithms when the the rank is constant and the connectivity $lambda$ is $omega(1)$. At the heart of our algorithm is a structural result regarding min-cuts in simple hypergraphs. We show a trade-off between the number of hyperedges taking part in all min-cuts and the size of the smaller side of the min-cut. This structural result can be viewed as a generalization of a well-known structural theorem for simple graphs [Kawarabayashi-Thorup, JACM 19]. We extend the framework of expander decomposition to simple hypergraphs in order to prove this structural result. We also make the proof of the structural result constructive to obtain our faster hypergraph connectivity algorithm.
Let $F$ be a graph. A hypergraph is called Berge $F$ if it can be obtained by replacing each edge in $F$ by a hyperedge containing it. Given a family of graphs $mathcal{F}$, we say that a hypergraph $H$ is Berge $mathcal{F}$-free if for every $F in m athcal{F}$, the hypergraph $H$ does not contain a Berge $F$ as a subhypergraph. In this paper we investigate the connections between spectral radius of the adjacency tensor and structural properties of a linear hypergraph. In particular, we obtain a spectral version of Tur{a}n-type problems over linear $k$-uniform hypergraphs by using spectral methods, including a tight result on Berge $C_4$-free linear $3$-uniform hypergraphs.
An oriented hypergraph is an oriented incidence structure that extends the concepts of signed graphs, balanced hypergraphs, and balanced matrices. We introduce hypergraphic structures and techniques that generalize the circuit classification of the s igned graphic frame matroid to any oriented hypergraphic incidence matrix via its locally-signed-graphic substructure. To achieve this, Camions algorithm is applied to oriented hypergraphs to provide a generalization of reorientation sets and frustration that is only well-defined on balanceable oriented hypergraphs. A simple partial characterization of unbalanceable circuits extends the applications to representable matroids demonstrating that the difference between the Fano and non-Fano matroids is one of balance.
In this paper, we prove that for any $kge 3$, there exist infinitely many minimal asymmetric $k$-uniform hypergraphs. This is in a striking contrast to $k=2$, where it has been proved recently that there are exactly $18$ minimal asymmetric graphs. We also determine, for every $kge 1$, the minimum size of an asymmetric $k$-uniform hypergraph.
We establish a so-called counting lemma that allows embeddings of certain linear uniform hypergraphs into sparse pseudorandom hypergraphs, generalizing a result for graphs [Embedding graphs with bounded degree in sparse pseudorandom graphs, Israel J. Math. 139 (2004), 93-137]. Applications of our result are presented in the companion paper [Counting results for sparse pseudorandom hypergraphs II].
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا