ترغب بنشر مسار تعليمي؟ اضغط هنا

Spectral Extremal Results for Hypergraphs

81   0   0.0 ( 0 )
 نشر من قبل Joshua N. Cooper
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $F$ be a graph. A hypergraph is called Berge $F$ if it can be obtained by replacing each edge in $F$ by a hyperedge containing it. Given a family of graphs $mathcal{F}$, we say that a hypergraph $H$ is Berge $mathcal{F}$-free if for every $F in mathcal{F}$, the hypergraph $H$ does not contain a Berge $F$ as a subhypergraph. In this paper we investigate the connections between spectral radius of the adjacency tensor and structural properties of a linear hypergraph. In particular, we obtain a spectral version of Tur{a}n-type problems over linear $k$-uniform hypergraphs by using spectral methods, including a tight result on Berge $C_4$-free linear $3$-uniform hypergraphs.

قيم البحث

اقرأ أيضاً

In this paper, we characterize the extremal digraphs with the maximal or minimal $alpha$-spectral radius among some digraph classes such as rose digraphs, generalized theta digraphs and tri-ring digraphs with given size $m$. These digraph classes are denoted by $mathcal{R}_{m}^k$, $widetilde{boldsymbol{Theta}}_k(m)$ and $INF(m)$ respectively. The main results about spectral extremal digraph by Guo and Liu in cite{MR2954483} and Li and Wang in cite{MR3777498} are generalized to $alpha$-spectral graph theory. As a by-product of our main results, an open problem in cite{MR3777498} is answered. Furthermore, we determine the digraphs with the first three minimal $alpha$-spectral radius among all strongly connected digraphs. Meanwhile, we determine the unique digraph with the fourth minimal $alpha$-spectral radius among all strongly connected digraphs for $0le alpha le frac{1}{2}$.
75 - Xizhi Liu , Dhruv Mubayi , 2021
For every positive integer $t$ we construct a finite family of triple systems ${mathcal M}_t$, determine its Tur{a}n number, and show that there are $t$ extremal ${mathcal M}_t$-free configurations that are far from each other in edit-distance. We al so prove a strong stability theorem: every ${mathcal M}_t$-free triple system whose size is close to the maximum size is a subgraph of one of these $t$ extremal configurations after removing a small proportion of vertices. This is the first stability theorem for a hypergraph problem with an arbitrary (finite) number of extremal configurations. Moreover, the extremal hypergraphs have very different shadow sizes (unlike the case of the famous Turan tetrahedron conjecture). Hence a corollary of our main result is that the boundary of the feasible region of ${mathcal M}_t$ has exactly $t$ global maxima.
We establish a so-called counting lemma that allows embeddings of certain linear uniform hypergraphs into sparse pseudorandom hypergraphs, generalizing a result for graphs [Embedding graphs with bounded degree in sparse pseudorandom graphs, Israel J. Math. 139 (2004), 93-137]. Applications of our result are presented in the companion paper [Counting results for sparse pseudorandom hypergraphs II].
We present a variant of a universality result of Rodl [On universality of graphs with uniformly distributed edges, Discrete Math. 59 (1986), no. 1-2, 125-134] for sparse, $3$-uniform hypergraphs contained in strongly jumbled hypergraphs. One of the i ngredients of our proof is a counting lemma for fixed hypergraphs in sparse ``pseudorandom uniform hypergraphs, which is proved in the companion paper [Counting results for sparse pseudorandom hypergraphs I].
218 - Nathan Reff 2015
An oriented hypergraph is a hypergraph where each vertex-edge incidence is given a label of $+1$ or $-1$. The adjacency and Laplacian eigenvalues of an oriented hypergraph are studied. Eigenvalue bounds for both the adjacency and Laplacian matrices o f an oriented hypergraph which depend on structural parameters of the oriented hypergraph are found. An oriented hypergraph and its incidence dual are shown to have the same nonzero Laplacian eigenvalues. A family of oriented hypergraphs with uniformally labeled incidences is also studied. This family provides a hypergraphic generalization of the signless Laplacian of a graph and also suggests a natural way to define the adjacency and Laplacian matrices of a hypergraph. Some results presented generalize both graph and signed graph results to a hypergraphic setting.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا